五月激情开心网,五月天激情社区,国产a级域名,婷婷激情综合,深爱五月激情网,第四色网址

納米技術論文優選九篇

時間:2023-05-05 09:10:50

引言:易發表網憑借豐富的文秘實踐,為您精心挑選了九篇納米技術論文范例。如需獲取更多原創內容,可隨時聯系我們的客服老師。

納米技術論文

第1篇

1.1納米技術及納米材料簡介納米材料通常是指粒徑在1nm到100nm之間的材料,這種材料通常具備特殊的物理化學性質,而納米材料加入其它物質中往往會改變其它物質的性質,這種納米材料改變其它材料性質的技術稱為納米技術。納米材料因其粒徑過小而具有界面效應、小尺寸效應以及宏觀量子隧道效應等,從而改變了材料的性能,并影響了其它物質的性能。從物理學角度解釋是:納米粒度過小,其表面就占有了很大的比例,當粒度小于10nm時,材料表面的原子占材料原子總數的三分之一以上,處于表面的原子與內部的原子所處的化學環境完全不同,就會表現出一些特殊的物理化學性質,叫做表面相。在大塊材料中,由于處于表面的原子遠小于體內原子,所以表面相很難表現,而納米材料的表面相現象就十分明細,如:在催化過程中,粒度表面結構的變化、表面的吸附以及表面的擴散等。實踐證明:當材料達到納米尺度時,材料的表面相會影響到材料的性質。除此之外,納米材料中的電子相關性很強、能級分裂和電子布局的改變,量子隧道和輸運的不同以及材料中的激發態都會影響納米材料的性能。

1.2納米材料對涂料性能的影響分析目前在涂料生產領域使用的涂料有納米二氧化硅、納米二氧化鈦、納米氧化鋅等半導體材料,這些材料具備一些其它材料不具備的性能,如光電催化特性、吸收特性、光電特性等,下面以納米二氧化硅和納米二氧化鈦為例,研究納米材料對涂料性能的改變。納米材料對白色涂料的影響試驗:將經過表面處理的納米二氧化硅、納米二氧化鈦分別做成含納米材料不同含量的白色涂料(0、0.5%、1%、1.5%、2%、2.5%),各制作出12塊標準的人工老化試樣板,然后各取其中6塊含納米二氧化硅或納米二氧化鈦不同的進行耐紫外老化試驗,另外的6塊作為對比樣板,最后使用尼康分光光度計測其顏色變化情況。

試驗的結果分析發現:在苯丙涂料中加入0.5%-2.0%的納米二氧化硅或二氧化鈦,涂膜的老化速度明顯變慢,說明納米二氧化硅或二氧化鈦對紫外光有著很好的屏蔽作用;作為對比,含有乳化漆抗紫外防老化分散液涂料的老化速度與含有納米材料的涂料類似,也說明了納米二氧化硅和二氧化鈦有著很好的吸收紫外線的作用。納米涂料耐老化機理分析:耐老化性能是衡量涂料好壞的一種重要性能,紫外線是導致涂料老化的一種電磁波,波長200-400nm,紫外線的波長越短,能量越強,對涂料的損壞也越大。納米二氧化鈦能夠引起紫外線的散射,從而實現屏蔽紫外線的作用,而粒徑是影響其散射能力的主要因素,經過試樣驗證得知,二氧化鈦在水中屏蔽紫外線的最佳粒徑是77nm,即銳鈦型納米級二氧化鈦,因此采用銳鈦級二氧化鈦是提高涂料耐紫外老化性能的最佳粒徑。

1.3納米材料在涂料中的應用納米材料在涂料生產中應用非常廣泛,按功能分通常分為結構涂層和功能涂層,結構涂層是通過提高基體的性質或改性,如超硬、抗氧化、耐熱、耐腐蝕等,功能性涂層是指賦予基體所不具備的其它性能,如消光、導電、絕緣、光反射等,在涂料中加入納米材料可以更好的提高涂層的防護能力,如防紫外線、抗降解、變色等。目前已經投入生產使用的涂料研究成果有很多,其中最為典型的是光催化涂料和特殊界面涂料。光催化涂料的工作原理是:某些納米材料在光照條件下對有害物質的降解有著很好的催化作用,利用這種催化作用原理研制成納米光催化涂料,如:利用特殊處理的納米二氧化鈦與純丙樹脂配制成的光催化涂料,這種涂料對氮氧化物、油脂、甲醛等有害物質有著很好的催化降解作用,其中對氮氧化物的降解效率超過了80%。

特殊界面涂料是指通過樹脂與納米材料的特殊復合后的涂料,會表現出一些特殊的物理化學性能,如疏水、疏油等,這些特殊性能是衡量涂料質量的重要指標之一,對提高涂料的耐污染性能至關重要,目前存在的有超雙親界面物性材料和超雙疏性界面材料。研究證明,通過有效的光照改變納米二氧化鈦的表面,可以形成親水性和親油性兩相共存的界面,稱為二元協同納米界面。這樣處理后的具有超雙親性的二氧化鈦表面,用作玻璃表面或建筑物表面,可以是建筑物表面和玻璃表面具有自動清潔和防止煙霧的效果。超雙疏性界面物性材料則是利用特殊的外延生長納米化學方法在特定表面構建納米尺寸幾何形狀互補的界面結構,這種構造方法是自下而上,由原子到分子、分子到聚集體的方式構建的,最終形成的凹凸相間界面的低凹表面可以吸附氣體分子穩定存在,而這種穩定存在在宏觀上表現為界面表面有一層穩定的氣體薄膜,從而使材料表現出對水和油的雙疏性。采用這樣的表面涂層修飾輸油管道,可以達到石油和管壁的無接觸運輸,很好的保護輸油管道的安全。納米材料對涂料性能的影響還有很多,如可以提高涂料觸變性、高附著力、儲存穩定性等,還有研究人員發現,納米材料與樹脂結合時可以形成的大量共價鍵,當納米材料的含量達到30%以上時,涂料膜會具有高強度、高彈性、高耐磨性等特性,但其研究成果還需要進一步驗證。納米技術還屬于新型技術,其在涂料要的應用還需要進一步的研究和探索,隨著納米技術的改性特點被不斷的開發,在不久的將來必然有更多的納米技術與涂料結合的成果出現。

2結束語

第2篇

納米技術主要是在一定的物質世界范圍之內,針對一些特定的研究對象進行研究的一門學科。而運用納米技術研制出的納米材料主要由納米粒子組成,納米粒子又稱超微顆粒,其尺寸一般在一百納米以下。納米材料因其物質顆粒的特性而使其具備了一定的效應和性能,換言之,納米材料因其特性而與傳統材料截然不同,其在輻射、吸收等方面具備了新的特性。運用這些新特性,不僅可以研制出自然界本身不存在的新型材料,還可以在很大程度上促進社會經濟的快速發展。

2納米技術在環境污染防治中的應用探討

2.1在汽車尾氣凈化方面的應用

在目前汽車尾氣處理方面,三效汽車尾氣催化轉換器運用得最為廣泛,而遺憾的是,盡管其在汽車尾氣處理方面發揮一定的作用,但其在汽車尾氣處理方面也存在著諸多缺陷與不足。例如,這種催化轉換器在使用時對燃油及發動機的設計有著較為嚴苛的要求;此外,隨著貴金屬價格的上漲,這種催化轉換器的價格也將進一步上漲,這無疑將會在一定程度上提高廠家的生產成本,進而給廠家帶來一定的壓力;最后,這種貴金屬轉換器的使用也將會對環境造成一定的污染,進而給環境帶來更大的壓力。而要使這種狀況得到進一步的改善,我們可以選用通過納米技術研發的復合稀土化合物粉體作用凈化汽車尾氣的催化劑。這種納米粉體較強的氧化還原性能不僅可以更為徹底地解決汽車尾氣排放中有害氣體對空氣環境的污染,同時其在氧化有害氣體的同時還能對這些有害氣體進行還原,使之最終轉化成對環境無害的相關氣體再進行排放。另外,與其他催化劑相比,納米粉體這種催化劑的吸附能力更強。

2.2在燃料脫硫方面的應用

燃料油使用過程中所產生的二氧化硫一直都是造成環境污染的重要因素之一,這些二氧化硫的排放主要來源于燃料油中的含硫化合物。為此,要進一步降低燃料使用過程中二氧化硫的排放量,在石油的提煉過程中我們就應采取一定的措施來降低其含硫比例和數量。而運用納米技術研制出的納米鈦酸鋅等粉體就可以在很大程度上實現脫硫的目的,可以說,這種粉體是一種較好的石油脫硫催化劑。經過這種納米粉體的催化作用,燃料油中硫含量將不超過百分之零點零一,也就是說,經過納米粉體的催化作用之后,燃料油中硫含量將符合相關國際標準。此外,在煤使用過程中,如果其得不到充分的燃燒,不僅會在一定程度上造成資源的浪費,同時還會產生二氧化硫等有害氣體,進而造成空氣環境的污染,而如果在煤燃燒過程中加入相應的納米助燃催化劑就可以在很大程度上改善這種現狀。

2.3在室內空氣凈化方面的應用

隨著房屋裝飾的蓬勃發展,室內涂料及油漆的用量越來越多,室內污染也隨之越來越嚴重。為此,近年來,室內污染越來越受到人們的關注及重視。有關調查及研究證實,剛裝修過的房屋內的有機物含量遠遠超過室外有機物含量,更有甚者超過工業區有機物的含量,而這些有機物含量大多數都會對人體造成一定的傷害,甚至一些有機物可能引發癌癥的產生。而運用納米技術研發的合成稀土光催化劑在降解這些有害物質方面則有著較為突出的表現,這其中有些納米光催化劑可以使有害物質的降解程度達到百分之百。這種納米光催化劑的運用原理主要是在光照環境下通過對室內有害物質的有效分解進而達到去除有害氣體、改善室內空氣質量的效果與目的。此外,這種納米光催化劑的運用不僅可以在保持原有大氣狀態的前提下去除掉空氣所含有的有害物質,同時還可以在一定程度上使得室內空氣中的含氧量得到一定的提升。

2.4在凈化水方面的應用

納濾技術作為在環境污染水處理中一種較為成熟的技術,其在凈化水方面發揮著不可替代的作用和功效。納濾膜因其分離時所達到的滲透壓低于發滲透膜,又被稱為低壓反滲透。納濾膜使用的優點主要表現在其能夠對大分子有機物和多價離子進行有效截留,同時實現小分子有機物和單價離子的順利通過,這一特性主要得益于其膜表面或膜中間含有一定量的帶電基團,進而使得其在某種程度上具備了荷電膜的相關特性。納濾膜這些鮮明的特性使其在污水處理中具備了不可多得的優勢,為此,其在工業污水處理中一直發揮著重要的作用,可以說,納濾膜的研制及使用為環境污染的治理做出了突出的貢獻。

2.5在固體廢棄物處理方面的應用

與傳統固體廢棄物污染處理相比,納米技術在固體廢棄物處理方面的優勢顯而易見。首先,就分解速度而言,納米處理劑對于固體廢棄物的降解更為迅速,也就是說,運用納米處理劑對固體廢棄物進行分解將更加節約時間。有關實驗證明,一些納米材料降解固體廢棄物的速度可以達到傳統材料降解固體廢棄物速度的十倍,由此可想而知納米材料在固體廢棄物分解方面的巨大優勢。此外,運用納米技術不僅可以將一些固體廢棄物的雜質除去,同時還可以將其轉換為一些可重復和循環利用的較細粉末。為此可以說,納米技術在改善固體廢棄物給環境造成污染方面發揮著積極的作用。

2.6在控制噪聲方面的應用

盡管噪聲污染一直不被人們所重視,但有關研究證明,一定的噪聲污染將會在很大程度上給人體造成一定的傷害,更為嚴重地,甚至導致死亡現象。依據噪聲污染的來源,我們可以運用納米技術降低機械設備在運轉過程中所產生的摩擦及撞擊聲。具體而言,我們可以通過對納米劑的研制及運用使得相關機械設備的表面形成一種較為光滑的保護膜,在機械設備進行運轉時發揮一定的作用,進而使得相應的摩擦系數進一步降低,從而達到減少摩擦力、降低噪音的目的,同時還使得相應機械設備的使用壽命在某種程度上進一步延長。

3結語

第3篇

1.1納米技術產業化存在的四大不足

1.1.1系統性產業支持政策、激勵措施不足

目前,我國納米技術產業化發展初現“南有蘇州、北有天津”的局面,在培育產業實體、強化平臺建設、聚集創新人才等方面,需出臺更具競爭力的系統性政策鼓勵、引導。如果不加快推進相關工作,將難以吸引更多優秀的納米企業落戶,痛失黃金發展期,產業化進程放慢。同時,納米產業的發展缺乏相應的激勵措施。高科技產業是知識與技術的高度結合,技術難度大,智力要求高,其滲透性和競爭性強,投資風險大。高科技產業激勵機制的完善離不開政府的支持,有效的激勵政策可以優化企業的投資行為,進而帶動產業的良性發展。

1.1.2產業規劃不足和缺乏持續投入

財政專項支持及持續投入缺乏,導致納米技術產業化進展緩慢。以蘇州為例,工業園區管委會連續4年投入20億元,預計2015年納米產值規模超過200億元,帶動相關產業1,000億元。國家納米技術與工程研究院“十二五”期間被列入我國重點研發平臺體系,擁有科技部認定國家納米高新技術產業化基地,擁有國內唯一一家納米產品質量監督檢驗中心。2012年,經天津市領導及相關部門的大力爭取,天津濱海新區與蘇州工業園區同時被財政部擬定為全國納米產業政策試點區域。創新集成研發和產業轉化平臺已落戶上述兩地,借助產業試點政策的國家戰略布局先機,應在推進納米產業化方面出臺相應的產業規劃、納米技術科研成果轉化及產業化方面的專項支持,持續推動納米技術產業轉化相關平臺的建設、運轉和后續資金支持,從財政、金融、產業政策法規完善上給予企業足夠的激勵,鼓勵從事納米產業,為產學研的深度融合提供有利的環境。

1.1.3產學研深層次合作不足

目前,我國納米技術研發人員、納米技術專利、從事納米技術生產的企業數目均已過萬,納米技術產業化已成為京津冀地區、沿海發達地區及省會城市高度關注的戰略性新興產業。但是產學研合作水平層次較低,合作的方式主要以委托研發、技術轉讓等低層次合作為主,重大項目聯合攻關等合作方式相對偏少。缺乏助推協同創新的載體,尚未擁有集科研人才、專業設備、高精尖技術及產業化項目信息等多種資源于一體的開放式創新平臺。缺乏產學研深層次合作,造成納米技術研究與市場的脫節,技術成果轉化困難,嚴重影響納米技術的產業轉化。如何采用創新模式來解決納米企業發展的核心技術問題和產業發展的共性技術難點,運用市場機制集聚創新資源,實現企業、大學和科研機構的深層次結合,對接雙創特區建設,形成技術標準體系,支撐和引領產業創新,將是創新發展路徑設計要考慮的重要因素。

1.1.4納米行業技術規范不足和行業協會缺失

低水平“科技成果”過剩,浪費了社會整體資源,更阻礙了納米技術產業化的進程。目前尚未成立國家級的納米技術產業化協會,在落實納米技術產業化創新發展過程中,要遵守國家的法律法規和納米技術產業化發展政策要求,參照國際標準和準則以及行業特點,研究并提出具體實施措施、行業規范和辦法,規范會員的行為,認識“偽納米”現象,打擊行業的不正之風,聯建納米科技服務創新平臺,組織參與國內外科研學術交流、工藝裝備展示等重大活動??茖W分析納米技術產業化發展過程中的各種問題,把握好產業發展的規律,充分發揮政府引導、科技支撐和市場推動的共同作用,打通納米技術產業化發展各個環節間的障礙,持之以恒地促進納米技術產業化發展。

2納米技術產業化創新發展的路徑選擇

納米技術產業化創新發展不僅要從宏觀上考慮國內外經濟、科技等的形勢發展,更要從內在創新要素進行頂層設計、系統集成,不斷實踐、不斷探索深層次創新發展模式和路徑。

2.1探尋深層次產學研合作——動態聯盟、聯合攻關

納米技術產業化創新發展實行動態聯盟、聯合攻關策略,匯集中央和地方的力量,各地大學、研究院所力量,企業力量,甚至國際力量共同擔任研究任務,更有效地推動我國納米技術產業化發展。在傳統的產學研相結合的基礎上,迫切需要加強深層次、實質性和運行機制上的合作,引導優勢科技資源向企業聚集,鼓勵在納米技術方面成熟的國內外高校、院所在企業中建設重點納米技術實驗室,或者企業在這些機構中設置相關實驗室,探索動態聯盟、聯合攻關機制,實現強強聯合。

2.2創新人才驅動與納米產業戰略聯盟聯動方案

通過實施“領軍人才-企業戰略聯盟產業技術創新”聯動方案,完善納米產業戰略發展體系。一方面注重科技領軍人才的培養和引進,把引進和培養納米技術的科技領軍人才和實用型人才作為納米技術產業化創新發展的重要內容之一,充分發揮領軍人才專家“人才庫”、“智囊團”、“攻關組”作用,結合實際,立足于解決問題、促進發展。另一方面組織聯盟的納米企業開展重大項目和重點技術的聯合攻關,通過聯盟內部和聯盟之間設立“聯盟專利池”,合作創新申請國際發明專利、新技術新產品標準,實現知識產權共享共建。通過合作創新獲得國家和地方科研項目立項,以聯盟為載體促進創新成果擴散。實現信息、數據和資料的共享,在確保整體利益的前提下,追求利益最大化。通過聯動方案最終實現加速研究成果共享與轉化,實現在技術創新、高端人才資源和科技服務3個層面的突破,攻關產業發展的重大技術難題,加速科技創新人才培養,加強科技交流與服務,推動產學研結合、協同創新和科技成果轉移轉化向更高層次發展。

2.3創新“六位一體”高速發展模式,促進納米產業蛙跳

在納米技術產業化過程中,條件成熟的實驗室等創新載體可以選擇面向社會開放運行,引導納米創新平臺向企業聚集、為企業服務。繼續出臺政策,支持民間資本進入納米產業,以緩解納米行業新興企業的資金短缺問題,充分考慮到納米產業發展周期較長的特點,在繼續加強政府投入的同時,借鑒國外對高新技術進行風險投資的成功經驗,引入風險投資,設立納米技術產業化投資基金,為新創的、有潛力的納米企業提供資金來源,實現國家資本和民間資本的對接,激勵民間資本進入新興的納米行業,提高納米科研技術從理論轉化為應用的速度,加快納米技術產業化的進程。逐步形成納米技術標準檢測服務平臺、技術與工程應用轉化、納米技術產業轉化、納米技術產業化投資基金、國家納米產業試點政策、中國納米技術產業協會相互支撐,高速發展的“六位一體”綜合產業促進體系,著力打造綜合創新平臺,構筑人才、技術、資金、信息的科技創新和產融結合為特征的“六位一體”綜合產業促進體系,加速培育納米中小企業,促進納米技術產業的“蛙跳”。

3結語

第4篇

關鍵詞:納米科學納米技術納米管納米線納米團簇半導體

NanoscienceandNanotechnology–theSecondRevolution

Abstract:Thefirstrevolutionofnanosciencetookplaceinthepast10years.Inthisperiod,researchersinChina,HongKongandworldwidehavedemonstratedtheabilitytofabricatelargequantitiesofnanotubes,nanowiresandnanoclustersofdifferentmaterials,usingeitherthe“build-up”or“build-down”approach.Theseeffortshaveshownthatifnanostructurescanbefabricatedinexpensively,therearemanyrewardstobereaped.Structuressmallerthan20nmexhibitnon-classicalpropertiesandtheyofferthebasisforentirelydifferentthinkinginmakingdevicesandhowdevicesfunction.Theabilitytofabricatestructureswithdimensionlessthan70nmallowthecontinuationofminiaturizationofdevicesinthesemiconductorindustry.Thesecondnanoscienceandnantechnologyrevolutionwilllikelytakeplaceinthenext10years.Inthisnewperiod,scientistsandengineerswillneedtoshowthatthepotentialandpromiseofnanostructurescanberealized.Therealizationisthefabricationofpracticaldeviceswithgoodcontrolinsize,composition,orderandpuritysothatsuchdeviceswilldeliverthepromisedfunctions.Weshalldiscusssomedifficultiesandchallengesfacedinthisnewperiod.Anumberofalternativeapproacheswillbediscussed.Weshallalsodiscusssomeoftherewardsifthesedifficultiescanbeovercome.

Keywords:Nanoscience,Nanotechnology,Nanotubes,Nanowires,Nanoclusters,“build-up”,“build-down”,Semiconductor

I.引言

納米科學和技術所涉及的是具有尺寸在1-100納米范圍的結構的制備和表征。在這個領域的研究舉世矚目。例如,美國政府2001財政年度在納米尺度科學上的投入要比2000財政年增長83%,達到5億美金。有兩個主要的理由導致人們對納米尺度結構和器件的興趣的增加。第一個理由是,納米結構(尺度小于20納米)足夠小以至于量子力學效應占主導地位,這導致非經典的行為,譬如,量子限制效應和分立化的能態、庫侖阻塞以及單電子邃穿等。這些現象除引起人們對基礎物理的興趣外,亦給我們帶來全新的器件制備和功能實現的想法和觀念,例如,單電子輸運器件和量子點激光器等。第二個理由是,在半導體工業有器件持續微型化的趨勢。根據“國際半導體技術路向(2001)“雜志,2005年前動態隨機存取存儲器(DRAM)和微處理器(MPU)的特征尺寸預期降到80納米,而MPU中器件的柵長更是預期降到45納米。然而,到2003年在MPU制造中一些不知其解的問題預期就會出現。到2005年類似的問題將預期出現在DRAM的制造過程中。半導體器件特征尺寸的深度縮小不僅要求新型光刻技術保證能使尺度刻的更小,而且要求全新的器件設計和制造方案,因為當MOS器件的尺寸縮小到一定程度時基礎物理極限就會達到。隨著傳統器件尺寸的進一步縮小,量子效應比如載流子邃穿會造成器件漏電流的增加,這是我們不想要的但卻是不可避免的。因此,解決方案將會是制造基于量子效應操作機制的新型器件,以便小物理尺寸對器件功能是有益且必要的而不是有害的。如果我們能夠制造納米尺度的器件,我們肯定會獲益良多。譬如,在電子學上,單電子輸運器件如單電子晶體管、旋轉柵門管以及電子泵給我們帶來諸多的微尺度好處,他們僅僅通過數個而非以往的成千上萬的電子來運作,這導致超低的能量消耗,在功率耗散上也顯著減弱,以及帶來快得多的開關速度。在光電子學上,量子點激光器展現出低閾值電流密度、弱閾值電流溫度依賴以及大的微分增益等優點,其中大微分增益可以產生大的調制帶寬。在傳感器件應用上,納米傳感器和納米探測器能夠測量極其微量的化學和生物分子,而且開啟了細胞內探測的可能性,這將導致生物醫學上迷你型的侵入診斷技術出現。納米尺度量子點的其他器件應用,比如,鐵磁量子點磁記憶器件、量子點自旋過濾器及自旋記憶器等,也已經被提出,可以肯定這些應用會給我們帶來許多潛在的好處。總而言之,無論是從基礎研究(探索基于非經典效應的新物理現象)的觀念出發,還是從應用(受因結構減少空間維度而帶來的優點以及因應半導體器件特征尺寸持續減小而需要這兩個方面的因素驅使)的角度來看,納米結構都是令人極其感興趣的。

II.納米結構的制備———首次浪潮

有兩種制備納米結構的基本方法:build-up和build-down。所謂build-up方法就是將已預制好的納米部件(納米團簇、納米線以及納米管)組裝起來;而build-down方法就是將納米結構直接地淀積在襯底上。前一種方法包含有三個基本步驟:1)納米部件的制備;2)納米部件的整理和篩選;3)納米部件組裝成器件(這可以包括不同的步驟如固定在襯底及電接觸的淀積等等)。“build-up“的優點是個體納米部件的制備成本低以及工藝簡單快捷。有多種方法如氣相合成以及膠體化學合成可以用來制備納米元件。目前,在國內、在香港以及在世界上許多的實驗室里這些方法正在被用來合成不同材料的納米線、納米管以及納米團簇。這些努力已經證明了這些方法的有效性。這些合成方法的主要缺點是材料純潔度較差、材料成份難以控制以及相當大的尺寸和形狀的分布。此外,這些納米結構的合成后工藝再加工相當困難。特別是,如何整理和篩選有著窄尺寸分布的納米元件是一個至關重要的問題,這一問題迄今仍未有解決。盡管存在如上的困難和問題,“build-up“依然是一種能合成大量納米團簇以及納米線、納米管的有效且簡單的方法??墒沁@些合成的納米結構直到目前為止仍然難以有什么實際應用,這是因為它們缺乏實用所苛求的尺寸、組份以及材料純度方面的要求。而且,因為同樣的原因用這種方法合成的納米結構的功能性質相當差。不過上述方法似乎適宜用來制造傳感器件以及生物和化學探測器,原因是垂直于襯底生長的納米結構適合此類的應用要求。

“Build-down”方法提供了杰出的材料純度控制,而且它的制造機理與現代工業裝置相匹配,換句話說,它是利用廣泛已知的各種外延技術如分子束外延(MBE)、化學氣相淀積(MOVCD)等來進行器件制造的傳統方法?!癇uild-down”方法的缺點是較高的成本。在“build-down”方法中有幾條不同的技術路徑來制造納米結構。最簡單的一種,也是最早使用的一種是直接在襯底上刻蝕結構來得到量子點或者量子線。另外一種是包括用離子注入來形成納米結構。這兩種技術都要求使用開有小尺寸窗口的光刻版。第三種技術是通過自組裝機制來制造量子點結構。自組裝方法是在晶格失配的材料中自然生長納米尺度的島。在Stranski-Krastanov生長模式中,當材料生長到一定厚度后,二維的逐層生長將轉換成三維的島狀生長,這時量子點就會生成。業已證明基于自組裝量子點的激光器件具有比量子阱激光器更好的性能。量子點器件的飽和材料增益要比相應的量子阱器件大50倍,微分增益也要高3個量級。閾值電流密度低于100A/cm2、室溫輸出功率在瓦特量級(典型的量子阱基激光器的輸出功率是5-50mW)的連續波量子點激光器也已經報道。無論是何種材料系統,量子點激光器件都預期具有低閾值電流密度,這預示目前還要求在大閾值電流條件下才能激射的寬帶系材料如III組氮化物基激光器還有很大的顯著改善其性能的空間。目前這類器件的性能已經接近或達到商業化器件所要求的指標,預期量子點基的此類材料激光器將很快在市場上出現。量子點基光電子器件的進一步改善主要取決于量子點幾何結構的優化。雖然在生長條件上如襯底溫度、生長元素的分氣壓等的變化能夠在一定程度上控制點的尺寸和密度,自組裝量子點還是典型底表現出在大小、密度及位置上的隨機變化,其中僅僅是密度可以粗糙地控制。自組裝量子點在尺寸上的漲落導致它們的光發射的非均勻展寬,因此減弱了使用零維體系制作器件所期望的優點。由于量子點尺寸的統計漲落和位置的隨機變化,一層含有自組裝量子點材料的光致發光譜典型地很寬。在豎直疊立的多層量子點結構中這種譜展寬效應可以被減弱。如果隔離層足夠薄,豎直疊立的多層量子點可典型地展現出豎直對準排列,這可以有效地改善量子點的均勻性。然而,當隔離層薄的時候,在一列量子點中存在載流子的耦合,這將失去因使用零維系統而帶來的優點。怎樣優化量子點的尺寸和隔離層的厚度以便既能獲得好均勻性的量子點又同時保持載流子能夠限制在量子點的個體中對于獲得器件的良好性能是至關重要的。

很清楚納米科學的首次浪潮發生在過去的十年中。在這段時期,研究者已經證明了納米結構的許多嶄新的性質。學者們更進一步征明可以用“build-down”或者“build-up”方法來進行納米結構制造。這些成果向我們展示,如果納米結構能夠大量且廉價地被制造出來,我們必將收獲更多的成果。

在未來的十年中,納米科學和技術的第二次浪潮很可能發生。在這個新的時期,科學家和工程師需要征明納米結構的潛能以及期望功能能夠得到兌現。只有獲得在尺寸、成份、位序以及材料純度上良好可控能力并成功地制造出實用器件才能實現人們對納米器件所期望的功能。因此,納米科學的下次浪潮的關鍵點是納米結構的人為可控性。

III.納米結構尺寸、成份、位序以及密度的控制——第二次浪潮

為了充分發揮量子點的優勢之處,我們必須能夠控制量子點的位置、大小、成份已及密度。其中一個可行的方法是將量子點生長在已經預刻有圖形的襯底上。由于量子點的橫向尺寸要處在10-20納米范圍(或者更小才能避免高激發態子能級效應,如對于GaN材料量子點的橫向尺寸要小于8納米)才能實現室溫工作的光電子器件,在襯底上刻蝕如此小的圖形是一項挑戰性的技術難題。對于單電子晶體管來說,如果它們能在室溫下工作,則要求量子點的直徑要小至1-5納米的范圍。這些微小尺度要求已超過了傳統光刻所能達到的精度極限。有幾項技術可望用于如此的襯底圖形制作。

—電子束光刻通常可以用來制作特征尺度小至50納米的圖形。如果特殊薄膜能夠用作襯底來最小化電子散射問題,那特征尺寸小至2納米的圖形可以制作出來。在電子束光刻中的電子散射因為所謂近鄰干擾效應(proximityeffect)而嚴重影響了光刻的極限精度,這個效應造成制備空間上緊鄰的納米結構的困難。這項技術的主要缺點是相當費時。例如,刻寫一張4英寸的硅片需要時間1小時,這不適宜于大規模工業生產。電子束投影系統如SCALPEL(scatteringwithangularlimitationprojectionelectronlithography)正在發展之中以便使這項技術較適于用于規模生產。目前,耗時和近鄰干擾效應這兩個問題還沒有得到解決。

—聚焦離子束光刻是一種機制上類似于電子束光刻的技術。但不同于電子束光刻的是這種技術并不受在光刻膠中的離子散射以及從襯底來的離子背散射影響。它能刻出特征尺寸細到6納米的圖形,但它也是一種耗時的技術,而且高能離子束可能造成襯底損傷。

—掃描微探針術可以用來劃刻或者氧化襯底表面,甚至可以用來操縱單個原子和分子。最常用的方法是基于材料在探針作用下引入的高度局域化增強的氧化機制的。此項技術已經用來刻劃金屬(Ti和Cr)、半導體(Si和GaAs)以及絕緣材料(Si3N4和silohexanes),還用在LB膜和自聚集分子單膜上。此種方法具有可逆和簡單易行等優點。引入的氧化圖形依賴于實驗條件如掃描速度、樣片偏壓以及環境濕度等??臻g分辨率受限于針尖尺寸和形狀(雖然氧化區域典型地小于針尖尺寸)。這項技術已用于制造有序的量子點陣列和單電子晶體管。這項技術的主要缺點是處理速度慢(典型的刻寫速度為1mm/s量級)。然而,最近在原子力顯微術上的技術進展—使用懸臂樑陣列已將掃描速度提高到4mm/s。此項技術的顯著優點是它的杰出的分辨率和能產生任意幾何形狀的圖形能力。但是,是否在刻寫速度上的改善能使它適用于除制造光刻版和原型器件之外的其他目的還有待于觀察。直到目前為止,它是一項能操控單個原子和分子的唯一技術。

—多孔膜作為淀積掩版的技術。多孔膜能用多種光刻術再加腐蝕來制備,它也可以用簡單的陽極氧化方法來制備。鋁膜在酸性腐蝕液中陽極氧化就可以在鋁膜上產生六角密堆的空洞,空洞的尺寸可以控制在5-200nm范圍。制備多孔膜的其他方法是從納米溝道玻璃膜復制。用這項技術已制造出含有細至40nm的空洞的鎢、鉬、鉑以及金膜。

—倍塞(diblock)共聚物圖形制作術是一種基于不同聚合物的混合物能夠產生可控及可重復的相分離機制的技術。目前,經過反應離子刻蝕后,在旋轉涂敷的倍塞共聚物層中產生的圖形已被成功地轉移到Si3N4膜上,圖形中空洞直徑20nm,空洞之間間距40nm。在聚苯乙烯基體中的自組織形成的聚異戊二烯(polyisoprene)或聚丁二烯(polybutadiene)球(或者柱體)可以被臭氧去掉或者通過鋨染色而保留下來。在第一種情況,空洞能夠在氮化硅上產生;在第二種情況,島狀結構能夠產生。目前利用倍塞共聚物光刻技術已制造出GaAs納米結構,結構的側向特征尺寸約為23nm,密度高達1011/cm2。

—與倍塞共聚物圖形制作術緊密相關的一項技術是納米球珠光刻術。此項技術的基本思路是將在旋轉涂敷的球珠膜中形成的圖形轉移到襯底上。各種尺寸的聚合物球珠是商業化的產品。然而,要制作出含有良好有序的小尺寸球珠薄膜也是比較困難的。用球珠單層膜已能制備出特征尺寸約為球珠直徑1/5的三角形圖形。雙層膜納米球珠掩膜版也已被制作出。能夠在金屬、半導體以及絕緣體襯底上使用納米球珠光刻術的能力已得到確認。納米球珠光刻術(納米球珠膜的旋轉涂敷結合反應離子刻蝕)已被用來在一些半導體表面上制造空洞和柱狀體納米結構。

—將圖形從母體版轉移到襯底上的其他光刻技術。幾種所謂“軟光刻“方法,比如復制鑄模法、微接觸印刷法、溶劑輔助鑄模法以及用硬模版浮雕法等已被探索開發。其中微接觸印刷法已被證明只能用來刻制特征尺寸大于100nm的圖形。復制鑄模法的可能優點是ellastometric聚合物可被用來制作成一個戳子,以便可用同一個戳子通過對戳子的機械加壓能夠制作不同側向尺寸的圖形。在溶劑輔助鑄模法和用硬模版浮雕法(或通常稱之為納米壓印術)之間的主要差異是,前者中溶劑被用于軟化聚合物,而后者中軟化聚合物依靠的是溫度變化。溶劑輔助鑄模法的可能優點是不需要加熱。納米壓印術已被證明可用來制作具有容量達400Gb/in2的納米激光光盤,在6英寸硅片上刻制亞100nm分辨的圖形,刻制10nmX40nm面積的長方形,以及在4英寸硅片上進行圖形刻制。除傳統的平面納米壓印光刻法之外,滾軸型納米壓印光刻法也已被提出。在此類技術中溫度被發現是一個關鍵因素。此外,應該選用具有較低的玻璃化轉變溫度的聚合物。為了取得高產,下列因素要解決:

1)大的戳子尺寸

2)高圖形密度戳子

3)低穿刺(lowsticking)

4)壓印溫度和壓力的優化

5)長戳子壽命。

具有低穿刺率的大尺寸戳子已經被制作出來。已有少量研究工作在試圖優化壓印溫度和壓力,但顯然需要進行更多的研究工作才能得到溫度和壓力的優化參數。高圖形密度戳子的制作依然在發展之中。還沒有足夠量的工作來研究戳子的壽命問題。曾有研究報告報道,覆蓋有超薄的特氟隆類薄膜的模板可以用來進行50次的浮刻而不需要中間清洗。報告指出最大的性能退化來自于嵌在戳子和聚合物之間的灰塵顆粒。如果戳子是從ellastometric母版制作出來的,抗穿刺層可能需要使用,而且進行大約5次壓印后需要更換。值得關心的其他可能問題包括鑲嵌的灰塵顆引起的戳子損傷或聚合物中圖形損傷,以及連續壓印之間戳子的清洗需要等。盡管進一步的優化和改良是必需的,但此項技術似乎有希望獲得高生產率。壓印過程包括對準、加熱及冷卻循環等,整個過程所需時間大約20分鐘。使用具有較低玻璃化轉換溫度的聚合物可以縮短加熱和冷卻循環所需時間,因此可以縮短整個壓印過程時間。

IV.納米制造所面對的困難和挑戰

上述每一種用于在襯底上圖形刻制的技術都有其優點和缺點。目前,似乎沒有哪個單一種技術可以用來高產量地刻制納米尺度且任意形狀的圖形。我們可以將圖形刻制的全過程分成下列步驟:

1.在一塊模版上刻寫圖形

2.在過渡性或者功能性材料上復制模版上的圖形

3.轉移在過渡性或者功能性材料上復制的圖形。

很顯然第二步是最具挑戰性的一步。先前描述的各項技術,例如電子束光刻或者掃描微探針光刻技術,已經能夠刻寫非常細小的圖形。然而,這些技術都因相當費時而不適于規模生產。納米壓印術則因可作多片并行處理而可能解決規模生產問題。此項技術似乎很有希望,但是在它能被廣泛應用之前現存的嚴重的材料問題必須加以解決。納米球珠和倍塞共聚物光刻術則提供了將第一步和第二步整合的解決方案。在這些技術中,圖形由球珠的尺寸或者倍塞共聚物的成分來確定。然而,用這兩種光刻術刻寫的納米結構的形狀非常有限。當這些技術被人們看好有很大的希望用來刻寫圖形以便生長出有序的納米量子點陣列時,它們卻完全不適于用來刻制任意形狀和復雜結構的圖形。為了能夠制造出高質量的納米器件,不但必須能夠可靠地將圖形轉移到功能材料上,還必須保證在刻蝕過程中引入最小的損傷。濕法腐蝕技術典型地不產生或者產生最小的損傷,可是濕法腐蝕并不十分適于制備需要陡峭側墻的結構,這是因為在掩模版下一定程度的鉆蝕是不可避免的,而這個鉆蝕決定性地影響微小結構的刻制。另一方面,用干法刻蝕技術,譬如,反應離子刻蝕(RIE)或者電子回旋共振(ECR)刻蝕,在優化條件下可以獲得陡峭的側墻。直到今天大多數刻蝕研究都集中于刻蝕速度以及刻蝕出垂直墻的能力,而關于刻蝕引入損傷的研究嚴重不足。已有研究表明,能在表面下100nm深處探測到刻蝕引入的損傷。當器件中的個別有源區尺寸小于100nm時,如此大的損傷是不能接受的。還有就是因為所有的納米結構都有大的表面-體積比,必須盡可能地減少在納米結構表面或者靠近的任何缺陷。

隨著器件持續微型化的趨勢的發展,普通光刻技術的精度將很快達到它的由光的衍射定律以及材料物理性質所確定的基本物理極限。通過采用深紫外光和相移版,以及修正光學近鄰干擾效應等措施,特征尺寸小至80nm的圖形已能用普通光刻技術制備出。然而不大可能用普通光刻技術再進一步顯著縮小尺寸。采用X光和EUV的光刻技術仍在研發之中,可是發展這些技術遇到在光刻膠以及模版制備上的諸多困難。目前來看,雖然也有一些具挑戰性的問題需要解決,特別是需要克服電子束散射以及相關聯的近鄰干擾效應問題,但投影式電子束光刻似乎是有希望的一種技術。掃描微探針技術提供了能分辨單個原子或分子的無可匹敵的精度,可是此項技術卻有固有的慢速度,目前還不清楚通過給它加裝陣列懸臂樑能否使它達到可以接受的刻寫速度。利用轉移在自組裝薄膜中形成的圖形的技術,例如倍塞共聚物以及納米球珠刻寫技術則提供了實現成本不是那么昂貴的大面積圖形刻寫的一種可能途徑。然而,在這種方式下形成的圖形僅局限于點狀或者柱狀圖形。對于制造相對簡單的器件而言,此類技術是足夠用的,但并不能解決微電子工業所面對的問題。需要將圖形從一張模版復制到聚合物膜上的各種所謂“軟光刻“方法提供了一種并行刻寫的技術途徑。模版可以用其他慢寫技術來刻制,然后在模版上的圖形可以通過要么熱輔助要么溶液輔助的壓印法來復制。同一塊模版可以用來刻寫多塊襯底,而且不像那些依賴化學自組裝圖形形成機制的方法,它可以用來刻制任意形狀的圖形。然而,要想獲得高生產率,某些技術問題如穿刺及因灰塵導致的損傷等問題需要加以解決。對一個理想的納米刻寫技術而言,它的運行和維修成本應該低,它應具備可靠地制備尺寸小但密度高的納米結構的能力,還應有在非平面上刻制圖形的能力以及制備三維結構的功能。此外,它也應能夠做高速并行操作,而且引入的缺陷密度要低。然而時至今日,仍然沒有任何一項能制作亞100nm圖形的單項技術能同時滿足上述所有條件。現在還難說是否上述技術中的一種或者它們的某種組合會取代傳統的光刻技術。究竟是現有刻寫技術的組合還是一種全新的技術會成為最終的納米刻寫技術還有待于觀察。

另一項挑戰是,為了更新我們關于納米結構的認識和知識,有必要改善現有的表征技術或者發展一種新技術能夠用來表征單個納米尺度物體。由于自組裝量子點在尺寸上的自然漲落,可信地表征單個納米結構的能力對于研究這些結構的物理性質是絕對至關重要的。目前表征單個納米結構的能力非常有限。譬如,沒有一種結構表征工具能夠用來確定一個納米結構的表面結構到0.1À的精度或者更佳。透射電子顯微術(TEM)能夠用來研究一個晶體結構的內部情況,但是它不能提供有關表面以及靠近表面的原子排列情況的信息。掃描隧道顯微術(STM)和原子力顯微術(AFM)能夠給出表面某區域的形貌,但它們并不能提供定量結構信息好到能仔細理解表面性質所要求的精度。當近場光學方法能夠給出局部區域光譜信息時,它們能給出的關于局部雜質濃度的信息則很有限。除非目前用來表征表面和體材料的技術能夠擴展到能夠用來研究單個納米體的表面和內部情況,否則能夠得到的有關納米結構的所有重要結構和組份的定量信息非常有限。

V.展望

第5篇

在工作陽極鈦(鈦基)表面涂上納米級的貴金屬[Pt(鉑)、Pd(鈀)、Os(鋨)、Ir(銦)、Ru(釕)、Rh(銠)等]氧化物,在通電情況下于溶液中產生化學活性很強的自由基。如:在有Cl-存在時,陽極則生成新生態的氯(Cl•);在水中則會產生新生態的氧(O•)。這些新生態的自由基能迅速地與溶液中的有機物(如COD)、有色物質、氨氮等起化學反應從而達到降低其濃度的目的,對病毒、細菌和藻類的孢子也具有強大的殺傷力。除了產生自由基外還能產生顯著的協同效應,如酸堿效應、沉淀效應、氣浮效應、誘導效應和吸附效應等,因此能大大提高水處理效果。

2納米催化電解技術主要影響因素

2.1電極

20世紀70年展起來的化學修飾電極,通過對電極表面進行修飾,將具有特定功能的分子、聚合物、納米材料等固定在電極表面,改變電極表面特性,使電極具有良好的電催化性能,并降低工作電位,促使有機物在發生電極析氧反應前氧化降解,并獲得良好的電極反應速率和更高效的電流輸出,減少副反應發生和降低運行能耗。在此基礎上發展起來的納米級催化劑涂層技術,是現階段比較有效的電極材料工藝。其擁有更低的工作電位和更高效的電流輸出,可減少副反應發生和降低運行能耗。

2.2電解質

電解質濃度增大,溶液導電能力增強,槽電壓降低,電壓效率提高;但濃度高到一定程度后,電壓效率的提高趨于平緩,增加藥劑成本,并會增大后續深度處理的難度。此外,部分電解質如Na2SO4等惰性電解質,電解過程中不參與反應,只起導電作用,電解效率的高低僅與其濃度有關;而類似NaCl等電解質,在電解過程中不僅起導電作用,更參與電極反應,氯離子在陽極氧化,進而轉變成次氯酸。次氯酸是強氧化劑,不但可直接氧化有機物,而且還能阻止有機物(或中間產物)在電極表面吸附,從而避免降低電極活性。

2.3反應器結構

現在多采用三維電極結構來代替二維電極結構,以增加單元電解槽體積的電極面積,且由于每對陽極和陰極距離很小,傳質非常容易,因此大大提高了電解效率和處理量。三維電極所用的填充材料主要有金屬粒子、鍍上金屬的玻璃球或塑料球、金屬氧化物、石墨和活性炭等。此外,溶液pH值、電解時間、電流密度、溶液的傳質因素、待去除的有機污染物特性等其它條件也對電解效率有較大影響。因此,深入研究有機污染物在電極上的反應歷程,開發高效電極材料,確定最佳降解條件,對提高電解效率和降低處理費用是非常必要的。

3納米催化電解技術在廈門市政污水處理中的應用

根據NCE的特點,其應用主要有如下幾方面:

1)將尾水處理達到或接近飲用水標準,直接回用到日常生活中,即實現水資源循環利用。該方式適用于水資源極度缺乏的地區,但投資高,工藝復雜。

2)將尾水處理到非飲用水標準,不與人體直接接觸,如便器沖洗、地面和汽車清洗、綠化澆灑和消防用水等。該方式適用性好,易推廣。

3)將達到外排標準的工業污水進行再處理后循環利用,一般需增加膜處理裝置等使其達到軟化水水平。

4)應用于污水處理廠剩余污泥的前處理,從源頭減少污泥產量。目前,NCE在廈門市政污水處理中應用的典型案例有污水處理廠中水回用、尾水消毒和污泥減量處理等。

3.1中水回用作為道路沖洗水

1)現場場地較為狹??;

2)設施要求安全性高,運行維護簡單,可自動化運行;

3)確保尾水經處理后含有一定余氯;

4)污染物濃度、色度進一步降低。對常見的尾水消毒工藝(紫外、加氯、二氧化氯、臭氧和電解消毒等)進行比選,結合尾水水質和處理后出水水質要求,確定采用納米催化電解+砂、碳過濾的處理工藝,設計并建設處理水量為300t/d的中水回用工程。其中,納米催化電解機外形尺寸H1485mm×W820mm×D530mm,采用三相交流380V供電,額定輸出直流電壓0~50V,額定輸出電流0~1000A,實際有效占地約10m2。電解機每個電解槽的電解容積約7.2L,電解停留時間一般控制在4s左右(根據實際進水量可進行調整),極板間距根據來水雜質顆粒大小一般選擇間距為4mm,極板交叉分布。

3.2小型污水處理站尾水消毒

因廈門市本島機場北側工業區部分企業排放污水問題,擬在機場北側車輛拆檢定損中心北側建設臨時污水處理站,主要處理附近約1km2范圍內產生的約30t/d污水。污水處理主體工藝采用一體式氧化溝,將傳統污水處理技術中的格柵、厭氧池、好氧池和沉淀池集成一體,大幅度減少用地面積;同時采用高效射流曝氣機,實現曝氣和推流;由于系統無內、外回流,無復雜自動化控制系統,對運行人員要求低。在消毒工藝的選擇上,考慮到污水處理站無人值守或僅設置設備看守人員的現狀,確定采用運行管理簡單的納米催化電解消毒工藝,在提供消毒功能的同時,可適當降低出水色度和濁度,也方便銜接后續中水回用工程。該處理站設計規模為100t/d,占地約120m2,總投資約60萬元。污水處理工藝為一體式氧化溝+轉盤過濾+納米催化電解+超濾膜過濾,污水經沉砂、隔油后提升進入籃式格柵,除去大于15mm固體垃圾后,進入一體式氧化溝,經歷生物降解、過濾、電解消毒等處理過程,出水滿足《城鎮污水處理廠污染物排放標準》(GB18918-2002)一級B排放標準,再根據去向選擇外排或超濾后作為中水回用。該項目中利用NCE去除污水色度、產生微氣泡去除濁度和產生強氧化性自由基實現消毒功能,相比常規加氯和紫外消毒工藝,無需補充化學藥劑,設備簡單易操作,運行穩定。2012年11月項目運行以來,出水水質指標中的糞大腸菌群值穩定低于10000個/L。該項目運行能耗約1.10kWh/t,其中電解機能耗約0.09kWh/t,因本項目處理水量較小,電解機采用單電解槽,且在電壓、電流控制上進一步優化,能耗較低。電解機實際輸出直流電壓約3V,輸出電流約150A。

3.3污水處理廠污泥處理減量

廈門前埔污水處理廠采用自主研發深度脫水工藝處理污泥,產生泥餅含水率<60%,泥質滿足《城鎮污水處理廠污泥處置混合填埋用泥質》(GB/T23485-2009)標準,萬噸污水產泥量從傳統方法9.5t降至5.4t。為進一步降低污泥產量,擬利用納米催化電解技術處理剩余污泥,減少進入后續工藝的污泥絕干量,從源頭減少污泥產量。主要工藝流程與深度脫水工藝流程相似,區別在于剩余污泥先經納米催化電解處理,利用電解產生的自由基和其他氧化性物質破壞污泥細胞結構,使污泥細胞內物質和結合水溶出并釋放到溶液中,經提升進入重力濃縮池,隨上清液溢流進入生化池補充碳源,從而減少進入化學調質池的絕干污泥量。經測算,污泥電解后,絕干污泥量減少16%;濃縮池上清液性質發生顯著變化,但對污水處理工藝基本不產生影響,出水水質保持穩定。該項目電解質投加量相當于0.107kg/萬t污水,約64元/萬t污水,該指標可進一步降低,并通過余氯濃度指示。

4結語

第6篇

鑒于以上缺陷,當前對于牙科復合樹脂的改良主要是將納米材料作為無機填料,或用納米級材料修飾微米級填料,再加入復合樹脂中,以改良樹脂或使其具備新的性能或兼而有之。

納米填料的種類

牙科復合樹脂的填料絕非單一種類、單一粒徑的材料,而是具有一定分布梯度,且不同種類粒子相互配合的系統。牙科復合樹脂所含的填料能增加機械強度,降低熱膨脹系數和聚合熱,其粒度、粒度分布、折光指數、所占體積百分比、X線阻射性及硬度、強度等都會對材料的性能及臨床表現產生影響。目前,顆粒型陶瓷粉或玻璃粉是主要的填料類型,纖維(晶須)填料的研究和應用也有報道,但相比前者較少。應用理化性能更加優良的填料來增強機械性能是發展的方向。已用于增強牙科復合樹脂的納米顆粒包括納米二氧化硅[1]、納米金剛石[2~4]、納米氧化鋯[5]、納米氮化硅[6]、納米羥基磷灰石[7],納米氧化鈦[8]、納米三氧化二鋁[9]等。這類納米填料的研究較多,且大多數牙科產品廠家都有自己品牌的納米樹脂問世。納米纖維增強如納米碳管、短纖維和晶須是目前許多學者所提出的復合樹脂填料的新成員,都被用于牙科復合樹脂的增強和性能改善,但基本都處于基礎研究之中,而尚未應用于臨床階段。這里所講的納米纖維增強復合樹脂,是指以納米纖維為另一類填料與顆粒填料共同增強的口腔充填用復合樹脂材料,所以這類材料中含顆粒與纖維兩種填料。口腔臨床中使用的還有一類單純使用的纖維增強樹脂基(多為環氧樹脂基)材料,典型的產品為牙體加強用的纖維樁。文章主要討論前者目前在口腔中的研究現狀。有學者為了更加明確研究目的和可能機理,也會以環氧樹脂為基體或只加入纖維填料進行研究。碳化硅晶須和氮化硅晶須是近年來研究較多的用于牙科復合樹脂的晶須種類。其他增強牙科復合樹脂表面硬度和斷裂強度的纖維(晶須)包括氧化鋅晶須、鈦酸鉀晶須、硅酸鹽晶須、硼酸鋁晶須、尼龍纖維、碳納米管等。

納米技術降低牙科復合樹脂的聚合收縮

Condon等用不含甲基丙烯酸功能化的硅烷代替含有甲基丙烯酸功能化的硅烷對二氧化硅納米顆粒表面進行處理,獲得無粘接性的納米顆粒將其添加到復合樹脂中,發現其具有與氣孔相似的效果,分布于樹脂基質中的納米填料通過局部塑性形成應力釋放點,可以有效地降低聚合收縮[10]。Condon在另外的研究中用非粘接性的納米填料、粘接性的納米填料和無被膜填料來降低聚合應力。研究表明,納米填料添加到雜化型復合樹脂可以有效降低聚合應力(降低31%),在一定的體積含量水平(10%),非粘接性納米填料具有更好的降低應力作用,在只含有納米填料的復合樹脂,亦具有相同的效果[11]。八面的倍半硅氧烷,是具有直徑0.53nm的納米籠結構,是一個輕量級、高性能的混合材料,其結構通式為(RSiO1.5)8。SSQ聚合物顯示出優良的介電和光學性質,并已廣泛應用,如在應用程序中的光致抗蝕劑、耐磨涂層、液晶顯示元件、電子電路板的絕緣涂層和光纖涂料等。SohMS等將SSQ加入復合樹脂中制成符合材料,SSQ可以顯著降低樹脂的聚合收縮量,并同時增加樹脂的硬度和彈性模量[12]。Garoushi等將半互穿聚合物網絡加入由玻璃纖維增強的復合樹脂,發現復合物的聚合收縮率下降[13]。此后,又將納米SiO2顆粒加入上述復合物中,除了發現加入納米粒子后可使聚合收縮降低外,他們還發現聚合收縮的降低與納米粒子的添加量和聚合溫度相關[14]。

添加納米材料增強復合樹脂的抗菌性能

體內外實驗表明,復合樹脂比其他充填材料更易引起菌斑沉積,因而更易引起繼發齲。繼發齲也是臨床中復合樹脂充填失敗的重要原因之一。因此,如果能將抗菌劑加入復合樹脂中,使其具有緩和持久的抗菌性能,將非常有利于其性能的提高。BeythN等將季銨鹽聚乙烯納米粒子以低濃度(1%)添加到復合樹脂中,發現在不影響其機械性能的基礎上可以保持1月以上的抗菌性能[15]。Jia等將Ag+、Ag+/Zn2+吸附到納米SiO2表面,添加到復合樹脂中,發現對大腸桿菌和S.糞菌都具有良好的抗菌性能,而且后者的效果更好,抗菌效果隨接觸時間延長和添加劑量增加而增強[16]。Xu等將熔附了納米硅顆粒的晶須和納米二鈣或四鈣磷酸鹽加入牙科復合樹脂中已達到自修復的目的[17,18]。四針狀氧化鋅晶須具有抗菌的作用。宋欣等將四針狀氧化鋅晶須加入復合樹脂中,發現其在提高樹脂機械性能的同時也能賦予復合樹脂材料較強的抗菌作用,是制備抗菌性復合樹脂的較優選擇[19]。Niu等也將其加入復合樹脂中,以使復合樹脂獲得抗菌性能和增強的機械性能[20]。Chae等將納米銀顆粒加入聚丙烯腈中并用電紡技術制成納米纖維,以使所制備的纖維具有抗菌性能[21]。

納米技術對牙科復合樹脂機械性能的改善

1納米顆粒增強牙科復合樹脂

鐘玉修、倪龍興等將納米金剛石作為填料加入復合樹脂中,并對其性能進行了一系列的研究,認為適當比例的金剛石填料可以提高復合樹脂的機械性能[2,3]。胡曉剛等將納米金剛石用硅烷偶聯劑進行表面改性后添加到復合樹脂中,發現改性金剛石的增強作用明顯優于未經改性的金剛石,同時金剛石的加入也改善了樹脂的韌性[4]。王君等將納米氮化硅加入復合樹脂并用紫外光照進行固化處理,發現納米氮化硅含量為1%時,體積收縮率僅為4.92%,而拉伸強度增加了近100%[6]。王云等將經過硅烷偶聯劑KH-570進行表面處理后的納米羥基磷灰石加入樹脂基質中,研制出能夠達到臨床要求的修復性納米羥基磷灰石復合材料,并檢測其機械物理強度[7]。筆者研究組曾將納米TiO2粒子在表面處理后加入復合樹脂中,制備納米復合樹脂,并根據國際標準化組織標準測試其力學性能,發現表面處理增強了納米TiO2與復合樹脂基質的相容性,添加表面處理后的納米TiO2粒子對樹脂起到增強增韌作用[8]。目前各大牙科產品廠商幾乎都研制出自己品牌的納米樹脂,所加入的納米級填料以納米二氧化硅為主,如3MFiltekSupreme系列、Dentsply的ceramX、Heraeus的VenusDiamond系列、Kerr的HerculitePrécis、Bisco的Reflexion、Pentron的ArtisterNanoComposite。但也有例外的,如IvoclarVivadent的IPSEmpressDirect用的是納米氟化鐿。這些經過納米技術改良的復合樹脂,廠家都宣稱具有更好的強度、耐磨性、可拋光性、更低的聚合收縮率以及更好的美學性能。

2納米纖維(晶須)增強牙科復合樹脂

氮化硅和碳化硅被選中是因為和大多數纖維相比,其體積小,長徑比大,可以更均勻地與樹脂混合,而且其抗拉強度極高。Xu等自1999年起對晶須增韌牙科復合樹脂進行了一系列的研究。該研究組曾將硅石納米粒子熔附到碳化硅陶瓷晶須上,以增強口腔復合樹脂的強度,硅石納米粒子通過增加晶須表面積和粗糙度來加強晶須與樹脂基質的結合[22]。他們還發現晶須與硅石粒子質量比為2︰1,樹脂的強度明顯高于單純添加硅石的納米粒子,且樹脂的彈性模量和硬度隨晶須與硅石粒子比例的增高而增高,同時樹脂的脆性降低,還發現少量添加晶須就能夠大幅度提高斷裂強度[23]。相比于較為昂貴的氮化硅和碳化硅等高品質晶須,鈦酸鉀晶須雖然在強度上有一定的差異,但其價格低廉,在工業上研究也較多[24],因此也有學者將鈦酸鉀晶須用于牙科復合樹脂的增強[25]。硼酸鋁晶須性價比高,顏色為白色,適于用做復合樹脂的增強材料,較顏色深的碳化硅和氮化硅晶須更易于光照固化,適用于臨床[26]。王蓉等比較了不同晶須熔附納米粒子對環氧樹脂力學性能的影響,結果表明:硼酸鋁晶須熔附納米Si02增強作用最佳。但是由于硼酸鋁晶須與納米Si02化學相似性差,因此僅通過高溫燒結,兩者熔附效果不理想[27]。Zhang等將羥基磷灰石(hydroxyapatite,HA)晶須添加到牙科復合樹脂,發現硅烷處理后HA晶須能夠提高樹脂的彈性模量和折裂韌性值[28]。使用更好的纖維制備方法以得到質量更好的纖維,也是提高纖維增韌樹脂效果的方法之一。目前,使用靜電紡絲技術制備納米纖維材料已成為近十幾年來世界材料科學技術領域最重要的學術與技術活動之一。靜電紡絲以其制造裝置簡單、紡絲成本低廉、可紡物質種類繁多、工藝可控等優點,已成為有效制備納米纖維材料的主要途徑之一。靜電紡絲技術已經制備了種類豐富的納米纖維,包括有機、有機/無機復合和無機納米纖維。應用靜電紡絲技術已經成功地制備出了結構多樣的納米纖維材料。通過不同的制備方法,如改變噴頭結構、控制實驗條件等,可以獲得實心、空心、核-殼結構的超細纖維或是蜘蛛網狀結構的二維纖維膜;通過設計不同的收集裝置,可以獲得單根纖維、纖維束、高度取向纖維或無規取向纖維膜等。電紡纖維是連續的長纖維,可以發揮橋聯增韌的作用。尼龍纖維韌性遠遠超過無機填料,并具有規律的圓柱形狀。已有關于用電紡方法制備尼龍纖維并用其增強樹脂的報道。Fong等將電紡尼龍纖維加入BisGMA/TEGDMA基牙科樹脂中,并檢測其機械性能,發現復合材料的彎曲強度、彈性模量和斷裂強度都有所增強[29]。但是,為了更加增強尼龍晶須,Tian等將納米級硅酸鹽晶須加入尼龍纖維并使其沿纖維長徑排列,將得到的纖維填料用樹脂單體處理后再研磨后以不同比例加入樹脂中,發現少量添加纖維就可以大幅度提高樹脂的機械性能[30]。此后,同一研究組還將納米硅酸鹽晶須以不同比例直接加入復合樹脂中[31],也發現少量添加未經過表面處理的晶須時可以提高樹脂的機械性能。也有一些由靜電紡織得到核殼納米聚合物纖維的報道,如聚甲基丙烯酸酯-聚丙烯晴,聚甲基丙烯酸酯-聚苯乙烯,聚丁二烯-聚苯乙烯,尼龍-聚甲基丙烯酸酯(nylon-PMMA)纖維[32~36]。纖維核殼結構的設計目的是讓纖維具有一個高強度核心,而其外殼則是可以與樹脂通過形成化學鍵或形成互穿網絡結構提供良好的粘結性,使最終形成的納米復合材料具備更優良的機械性能。其中PMMA-PAN被用于增加牙科復合樹脂的機械性能[37,38]。筆者研究組曾將單壁碳納米管經過短切和表面處理后包裹上納米二氧化硅顆粒,再添加到復合樹脂中,制成納米復合樹脂,并檢測其機械強度,發現經過處理的SWCNTs在樹脂基質中呈良好的單分散狀,且制成的納米復合樹脂的強度與對照組相比,其增高的幅度具有統計學意義[39]。但從這個研究中也發現了碳納米管用于牙科美學修復所存在的問題,那就是碳管的顏色問題。盡管被納米二氧化硅包裹后才加入樹脂中,且添加量不高,但添加碳管后的樹脂仍表現為灰黑色,與牙齒顏色相差較大。這說明,至少在目前這種處理方式下,雖然碳管機械性能很好,但不太適合用于牙科復合樹脂的改良。這也促使我們尋找其他性能好、顏色也更接近齒色的納米管用于復合樹脂的改良。添加新型填料后的復合材料可能會更強更硬,但同時也降低了它們的透光性和光固化的效能,因而要求其具備自固化或熱固化的能力。有學者將納米Al2O3晶須加入牙科樹脂基托中以增強其熱傳導性[40],不過,熱傳導性的增強對于充填性樹脂來說不適宜,因為會導致對牙髓神經的刺激。納米結構的鈦管也是很有前景一種晶須填料。Khaleda等已將其用于PMMA、骨水門汀和流體樹脂的增強[41]。有學者對兩種玻璃纖維增韌的復合樹脂(NuliteF和Alert,增強體為微米級玻璃纖維)充填體做了為期6年的臨床隨訪[42],發現充填失敗的主要原因是繼發齲和充填體(即復合樹脂)或牙體的斷裂。根據他們得到的結果判斷,Alert達到了美國牙科協會的標準,而NuliteF沒有達到。纖維增強樹脂復合材料與其他混合樹脂復合材料相比,其體外研究顯示了極高的電子模量和斷裂韌性比,但是其表面粗糙度也增加了。添加到樹脂基質中的纖維需要控制方向、大小和其他特征,以及其排列位置和方向定位的可重復性。然而,目前這些仍是該領域的重大挑戰。也有一些學者嘗試用了一些方法,如原位聚合或預聚合,使纖維能在樹脂基質中定向分布。Koziol等使用原位聚合的方法實現了在聚苯乙烯中碳納米管的定向排列[43]。

第7篇

1982年,Boutonmt首先報道了應用微乳液制備出了納米顆粒:用水合胼或者氫氣還原在W/O型微乳液水核中的貴金屬鹽,得到了單分散的Pt,Pd,Ru,Ir金屬顆粒(3~nm)。從此以后,不斷有文獻報道用微乳液合成各種納米粒子。本文從納米粒子制備的角度出發,論述了微乳反應器的原理、形成與結構,并對微乳液在納米材料制備領域中的應用狀況進行了闡述。

1微乳反應器原理

在微乳體系中,用來制備納米粒子的一般是W/O型體系,該體系一般由有機溶劑、水溶液。活性劑、助表面活性劑4個組分組成。常用的有機溶劑多為C6~C8直鏈烴或環烷烴;表面活性劑一般有AOT[2一乙基己基]磺基琥珀酸鈉]。AOS、SDS(十二烷基硫酸鈉)、SDBS(十六烷基磺酸鈉)陰離子表面活性劑、CTAB(十六烷基三甲基溴化銨)陽離子表面活性劑、TritonX(聚氧乙烯醚類)非離子表面活性劑等;助表面活性劑一般為中等碳鏈C5~C8的脂肪酸。

W/O型微乳液中的水核中可以看作微型反應器(Microreactor)或稱為納米反應器,反應器的水核半徑與體系中水和表面活性劑的濃度及種類有直接關系,若令W=[H2O/[表面活性劑],則由微乳法制備的納米粒子的尺寸將會受到W的影響。利用微膠束反應器制備納米粒子時,粒子形成一般有三種情況(可見圖1、2、3所示)。

(l)將2個分別增溶有反應物A、B的微乳液混合,此時由于膠團顆粒間的碰撞,發生了水核內物質的相互交換或物質傳遞,引起核內的化學反應。由于水核半徑是固定的,不同水核內的晶核或粒子之間的物質交換不能實現,所以水核內粒子尺寸得到了控制,例如由硝酸銀和氯化鈉反應制備氯化鈉納粒。

(2)一種反應物在增溶的水核內,另一種以水溶液形式(例如水含肼和硼氫化鈉水溶液)與前者混合。水相內反應物穿過微乳液界面膜進入水核內與另一反應物作用產生晶核并生長,產物粒子的最終粒徑是由水核尺寸決定的。例如,鐵,鎳,鋅納米粒子的制備就是采用此種體系。

(3)一種反應物在增溶的水核內,另一種為氣體(如O2、NH3,CO2),將氣體通入液相中,充分混合使兩者發生反應而制備納米顆粒,例如,Matson等用超臨界流體一反膠團方法在AOT一丙烷一H2O體系中制備用Al(OH)3膠體粒子時,采用快速注入干燥氨氣方法得到球形均分散的超細Al(OH)3粒子,在實際應用當中,可根據反應特點選用相應的模式。

2微乳反應器的形成及結構

和普通乳狀液相比,盡管在分散類型方面微乳液和普通乳狀液有相似之處,即有O/W型和W/O型,其中W/O型可以作為納米粒子制備的反應器。但是微乳液是一種熱力學穩定的體系,它的形成是自發的,不需要外界提供能量。正是由于微乳液的形成技術要求不高,并且液滴粒度可控,實驗裝置簡單且操作容易,所以微乳反應器作為一種新的超細顆粒的制備方法得到更多的研究和應用。

2.1微乳液的形成機理

Schulman和Prince等提出瞬時負界面張力形成機理。該機理認為:油/水界面張力在表面活性劑存在下將大大降低,一般為l~10mN/m,但這只能形成普通乳狀液。要想形成微乳液必須加入助表面活性劑,由于產生混合吸附,油/水界面張力迅速降低達10-3~10-5mN/m,甚至瞬時負界面張力Y<0。但是負界面張力是不存在的,所以體系將自發擴張界面,表面活性劑和助表面活性劑吸附在油/水界面上,直至界面張力恢復為零或微小的正值,這種瞬時產生的負界面張力使體系形成了微乳液。若是發生微乳液滴的聚結,那么總的界面面積將會縮小,復又產生瞬時界面張力,從而對抗微乳液滴的聚結。對于多組分來講,體系的Gibbs公式可表示為:

--dγ=∑Гidui=∑ГiRTdlnCi

(式中γ為油/水界面張力,Гi為i組分在界面的吸附量,ui為I組分的化學位,Ci為i組分在體相中的濃度)

上式表明,如果向體系中加入一種能吸附于界面的組分(Г>0),一般中等碳鏈的醇具有這一性質,那么體系中液滴的表面張力進一步下降,甚至出現負界面張力現象,從而得到穩定的微乳液。不過在實際應用中,對一些雙鏈離子型表面活性劑如AOT和非離子表面活性劑則例外,它們在無需加入助表面活性劑的情況下也能形成穩定的微乳體系,這和它們的特殊結構有關。

2.2微乳液的結構

RObbins,MitChell和Ninham從雙親物聚集體的分子的幾何排列角度考慮,提出了界面膜中排列的幾何排列理論模型,成功地解釋了界面膜的優先彎曲和微乳液的結構問題。

目前,有關微乳體系結構和性質的研究方法獲得了較大的發展,較早采用的有光散射、雙折射、電導法、沉降法、離心沉降和粘度測量法等;較新的有小角中子散射和X射線散射、電子顯微鏡法。正電子湮滅、靜態和動態熒光探針法、NMR、ESR(電子自旅共振)、超聲吸附和電子雙折射等。

3微乳反應器的應用——納米顆粒材料的制備

3.1納米催化材料的制備

利用W/O型微乳體系可以制備多相反應催化劑,Kishida。等報道了用該方法制備

Rh/SiO2和Rh/ZrO2載體催化劑的新方法。采用NP-5/環已烷/氯化銠微乳體系,非離子表面活性劑NP-5的濃度為0.5mol/L,氯化銠在溶液中濃度為0.37mol/L,水相體積分數為0.11。25℃時向體系中加入還原劑水含肼并加入稀氨水,然后加入正丁基醇鋯的環乙烷溶液,強烈攪拌加熱到40℃而生成淡黃色沉淀,離心分離和乙醇洗滌,80℃干燥并在500℃的灼燒3h,450℃下用氧氣還原2h,催化劑命名為“ME”。通過性能檢測,該催化劑活性遠比采用浸漬法制得的高。

3.2無機化合物納粒的制備

利用W/O型微乳體系也可以制備無機化合物,鹵化銀在照像底片乳膠中應用非常重要,尤其是納米級鹵化銀粒子。用水一AOT一烷烴微乳體系合成了AgCl和AgBr納米粒子,AOT濃度為0.15mol/L,第一個微乳體系中硝酸銀為0.4mol/L,第二個微乳體系中NaCl或NaBr為0.4mol/L,混合兩微乳液并攪拌,反應生成AgCl或AgBr納米顆粒。

又以制備CaCO3為例,微乳體系中含Ca(OH)2,向體系中通入CO2氣體,CO2溶入微乳液并擴散,膠束中發生反應生成CaCO3顆粒,產物粒徑為80~100nm。

3.3聚合物納粒的制備

利用W/O型微乳體系可以制備有機聚丙烯酸胺納粒。在20mlAOTt——正己烷溶液中加入0.1mlN-N一亞甲基雙丙烯酰胺(2mg/rnl)和丙烯酰胺(8mg/ml)的混合物,加入過硫酸銨作為引發劑,在氮氣保護下聚合,所得產物單分散性較好。

3.4金屬單質和合金的制備

利用W/O型微乳體系可以制備金屬單質和合金,例如在AOT-H2O-n—heptane體系中,一種反相微膠束中含有0.lmol/LNiCl2,另一反相微膠束中含有0.2mol/LNaBH4,混合攪拌,產物經分離、干燥并在300℃惰性氣體保護下結晶可得鎳納米顆粒。在某微乳體系中含有0.0564mol/L,FeC12和0.2mol/LNiCl2,另一體系中含有0.513mol/LNaBH4溶液,混合兩微乳體系進行反應,產物經庚烷、丙酮洗滌,可以得到Fe-Ni合金微粒(r=30nm)。

3.5磁性氧化物顆粒的制備

利用W/O型微乳體系可以制備氧化物納米粒子,例如在AOT-H2O-n-heptane體系中,一種乳液中含有0.15mol/LFeCl2和0.3mol/LFeCl3,另一體系中含有NH4OH,混合兩種微乳液充分反應,產物經離心,用庚烷、丙酮洗滌并干燥,可以得到Fe3O4納粒(r=4nm)。

3.6高溫超導體的制備

利用W/O型微乳體系可以合成超導體,例如在水一CTAB一正丁醇一辛烷微乳體系中,一個含有機釔、鋇和銅的硝酸鹽的水溶液,三者之比為1:2:3;另一個含有草酸銨溶液作為水相,混合兩微乳液,產物經分離,洗滌,干燥并在820℃灼燒2h,可以得到Y-Ba-Cu—O超導體,該超導體的Tc為93K。另外在陰離子表面活性劑IgegalCO-430微乳體系中,混合Bi、Pb、Sr、Ca和Cu的鹽及草酸鹽溶液,最終可以制得Bi-Pb-Sr-Ca-Cu—O超導體,經DC磁化率測定,可知超導轉化溫度為Tc=112K,和其它方法制備的超導體相比,它們顯示了更為優越的性能。

目前對納米顆粒材料的研究方法比較多,較直接的方法有電鏡觀測(SEM、TEM、STEM、STM等);間接的方法有電子、X一射線衍射法(XRD),中子衍射,光譜方法有EXAFS,NEXAFS,SEX-AFS,ESR,NMR,紅外光譜,拉曼光譜,紫外一可見分光光度法(UV-VIS),熒光光譜及正電子湮沒,動態激光光散射(DLS)等。

第8篇

1、各國競相出臺納米科技發展戰略和計劃

由于納米技術對國家未來經濟、社會發展及國防安全具有重要意義,世界各國(地區)紛紛將納米技術的研發作為21世紀技術創新的主要驅動器,相繼制定了發展戰略和計劃,以指導和推進本國納米科技的發展。目前,世界上已有50多個國家制定了國家級的納米技術計劃。一些國家雖然沒有專項的納米技術計劃,但其他計劃中也往往包含了納米技術相關的研發。

(1)發達國家和地區雄心勃勃

為了搶占納米科技的先機,美國早在2000年就率先制定了國家級的納米技術計劃(NNI),其宗旨是整合聯邦各機構的力量,加強其在開展納米尺度的科學、工程和技術開發工作方面的協調。2003年11月,美國國會又通過了《21世紀納米技術研究開發法案》,這標志著納米技術已成為聯邦的重大研發計劃,從基礎研究、應用研究到研究中心、基礎設施的建立以及人才的培養等全面展開。

日本政府將納米技術視為“日本經濟復興”的關鍵。第二期科學技術基本計劃將生命科學、信息通信、環境技術和納米技術作為4大重點研發領域,并制定了多項措施確保這些領域所需戰略資源(人才、資金、設備)的落實。之后,日本科技界較為徹底地貫徹了這一方針,積極推進從基礎性到實用性的研發,同時跨省廳重點推進能有效促進經濟發展和加強國際競爭力的研發。

歐盟在2002—2007年實施的第六個框架計劃也對納米技術給予了空前的重視。該計劃將納米技術作為一個最優先的領域,有13億歐元專門用于納米技術和納米科學、以知識為基礎的多功能材料、新生產工藝和設備等方面的研究。歐盟委員會還力圖制定歐洲的納米技術戰略,目前,已確定了促進歐洲納米技術發展的5個關鍵措施:增加研發投入,形成勢頭;加強研發基礎設施;從質和量方面擴大人才資源;重視工業創新,將知識轉化為產品和服務;考慮社會因素,趨利避險。另外,包括德國、法國、愛爾蘭和英國在內的多數歐盟國家還制定了各自的納米技術研發計劃。

(2)新興工業化經濟體瞄準先機

意識到納米技術將會給人類社會帶來巨大的影響,韓國、中國臺灣等新興工業化經濟體,為了保持競爭優勢,也紛紛制定納米科技發展戰略。韓國政府2001年制定了《促進納米技術10年計劃》,2002年頒布了新的《促進納米技術開發法》,隨后的2003年又頒布了《納米技術開發實施規則》。韓國政府的政策目標是融合信息技術、生物技術和納米技術3個主要技術領域,以提升前沿技術和基礎技術的水平;到2010年10年計劃結束時,韓國納米技術研發要達到與美國和日本等領先國家的水平,進入世界前5位的行列。

中國臺灣自1999年開始,相繼制定了《納米材料尖端研究計劃》、《納米科技研究計劃》,這些計劃以人才和核心設施建設為基礎,以追求“學術卓越”和“納米科技產業化”為目標,意在引領臺灣知識經濟的發展,建立產業競爭優勢。

(3)發展中大國奮力趕超

綜合國力和科技實力較強的發展中國家為了迎頭趕上發達國家納米科技發展的勢頭,也制定了自己的納米科技發展戰略。中國政府在2001年7月就了《國家納米科技發展綱要》,并先后建立了國家納米科技指導協調委員會、國家納米科學中心和納米技術專門委員會。目前正在制定中的國家中長期科技發展綱要將明確中國納米科技發展的路線圖,確定中國在目前和中長期的研發任務,以便在國家層面上進行指導與協調,集中力量、發揮優勢,爭取在幾個方面取得重要突破。鑒于未來最有可能的技術浪潮是納米技術,南非科技部正在制定一項國家納米技術戰略,可望在2005年度執行。印度政府也通過加大對從事材料科學研究的科研機構和項目的支持力度,加強材料科學中具有廣泛應用前景的納米技術的研究和開發。

2、納米科技研發投入一路攀升

納米科技已在國際間形成研發熱潮,現在無論是富裕的工業化大國還是渴望富裕的工業化中國家,都在對納米科學、技術與工程投入巨額資金,而且投資迅速增加。據歐盟2004年5月的一份報告稱,在過去10年里,世界公共投資從1997年的約4億歐元增加到了目前的30億歐元以上。私人的納米技術研究資金估計為20億歐元。這說明,全球對納米技術研發的年投資已達50億歐元。

美國的公共納米技術投資最多。在過去4年內,聯邦政府的納米技術研發經費從2000年的2.2億美元增加到2003年的7.5億美元,2005年將增加到9.82億美元。更重要的是,根據《21世紀納米技術研究開發法》,在2005~2008財年聯邦政府將對納米技術計劃投入37億美元,而且這還不包括國防部及其他部門將用于納米研發的經費。

日本目前是僅次于美國的第二大納米技術投資國。日本早在20世紀80年代就開始支持納米科學研究,近年來納米科技投入迅速增長,從2001年的4億美元激增至2003年的近8億美元,而2004年還將增長20%。

在歐洲,根據第六個框架計劃,歐盟對納米技術的資助每年約達7.5億美元,有些人估計可達9.15億美元。另有一些人估計,歐盟各國和歐盟對納米研究的總投資可能兩倍于美國,甚至更高。

中國期望今后5年內中央政府的納米技術研究支出達到2.4億美元左右;另外,地方政府也將支出2.4億~3.6億美元。中國臺灣計劃從2002~2007年在納米技術相關領域中投資6億美元,每年穩中有增,平均每年達1億美元。韓國每年的納米技術投入預計約為1.45億美元,而新加坡則達3.7億美元左右。

就納米科技人均公共支出而言,歐盟25國為2.4歐元,美國為3.7歐元,日本為6.2歐元。按照計劃,美國2006年的納米技術研發公共投資增加到人均5歐元,日本2004年增加到8歐元,因此歐盟與美日之間的差距有增大之勢。公共納米投資占GDP的比例是:歐盟為0.01%,美國為0.01%,日本為0.02%。

另外,據致力于納米技術行業研究的美國魯克斯資訊公司2004年的一份年度報告稱,很多私營企業對納米技術的投資也快速增加。美國的公司在這一領域的投入約為17億美元,占全球私營機構38億美元納米技術投資的46%。亞洲的企業將投資14億美元,占36%。歐洲的私營機構將投資6.5億美元,占17%。由于投資的快速增長,納米技術的創新時代必將到來。

3、世界各國納米科技發展各有千秋

各納米科技強國比較而言,美國雖具有一定的優勢,但現在尚無確定的贏家和輸家。

(1)在納米科技論文方面日、德、中三國不相上下

根據中國科技信息研究所進行的納米論文統計結果,2000—2002年,共有40370篇納米研究論文被《2000—2002年科學引文索引(SCI)》收錄。納米研究論文數量逐年增長,且增長幅度較大,2001年和2002年的增長率分別達到了30.22%和18.26%。

2000—2002年納米研究論文,美國以較大的優勢領先于其他國家,3年累計論文數超過10000篇,幾乎占全部論文產出的30%。日本(12.76%)、德國(11.28%)、中國(10.64%)和法國(7.89%)位居其后,它們各自的論文總數都超過了3000篇。而且以上5國2000—2002年每年的納米論文產出大都超過了1000篇,是納米研究最活躍的國家,也是納米研究實力最強的國家。中國的增長幅度最為突出,2000年中國納米論文比例還落后德國2個多百分點,到2002年已經超過德國,位居世界第三位,與日本接近。

在上述5國之后,英國、俄羅斯、意大利、韓國、西班牙發表的論文數也較多,各國3年累計論文總數都超過了1000篇,且每年的論文數排位都可以進入前10名。這5個國家可以列為納米研究較活躍的國家。

另外,如果歐盟各國作為一個整體,其論文量則超過36%,高于美國的29.46%。

(2)在申請納米技術發明專利方面美國獨占鰲頭

據統計:美國專利商標局2000—2002年共受理2236項關于納米技術的專利。其中最多的國家是美國(1454項),其次是日本(368項)和德國(118項)。由于專利數據來源美國專利商標局,所以美國的專利數量非常多,所占比例超過了60%。日本和德國分別以16.46%和5.28%的比例列在第二位和第三位。英國、韓國、加拿大、法國和中國臺灣的專利數也較多,所占比例都超過了1%。

專利反映了研究成果實用化的能力。多數國家納米論文數與專利數所占比例的反差較大,在論文數最多的20個國家和地區中,專利數所占比例超過論文數所占比例的國家和地區只有美國、日本和中國臺灣。這說明,很多國家和地區在納米技術研究上具備一定的實力,但比較側重于基礎研究,而實用化能力較弱。

(3)就整體而言納米科技大國各有所長

美國納米技術的應用研究在半導體芯片、癌癥診斷、光學新材料和生物分子追蹤等領域快速發展。隨著納米技術在癌癥診斷和生物分子追蹤中的應用,目前美國納米研究熱點已逐步轉向醫學領域。醫學納米技術已經被列為美國國家的優先科研計劃。在納米醫學方面,納米傳感器可在實驗室條件下對多種癌癥進行早期診斷,而且,已能在實驗室條件下對前列腺癌、直腸癌等多種癌癥進行早期診斷。2004年,美國國立衛生研究院癌癥研究所專門出臺了一項《癌癥納米技術計劃》,目的是將納米技術、癌癥研究與分子生物醫學相結合,實現2015年消除癌癥死亡和痛苦的目標;利用納米顆粒追蹤活性物質在生物體內的活動也是一個研究熱門,這對于研究艾滋病病毒、癌細胞等在人體內的活動情況非常有用,還可以用來檢測藥物對病毒的作用效果。利用納米顆粒追蹤病毒的研究也已有成果,未來5~10年有望商業化。

雖然醫學納米技術正成為納米科技的新熱點,納米技術在半導體芯片領域的應用仍然引人關注。美國科研人員正在加緊納米級半導體材料晶體管的應用研究,期望突破傳統的極限,讓芯片體積更小、速度更快。納米顆粒的自組裝技術是這一領域中最受關注的地方。不少科學家試圖利用化學反應來合成納米顆粒,并按照一定規則排列這些顆粒,使其成為體積小而運算快的芯片。這種技術本來有望取代傳統光刻法制造芯片的技術。在光學新材料方面,目前已有可控直徑5納米到幾百納米、可控長度達到幾百微米的納米導線。

日本納米技術的研究開發實力強大,某些方面處于世界領先水平,但尚未脫離基礎和應用研究階段,距離實用化還有相當一段路要走。在納米技術的研發上,日本最重視的是應用研究,尤其是納米新材料研究。除了碳納米管外,日本開發出多種不同結構的納米材料,如納米鏈、中空微粒、多層螺旋狀結構、富勒結構套富勒結構、納米管套富勒結構、酒杯疊酒杯狀結構等。

在制造方法上,日本不斷改進電弧放電法、化學氣相合成法和激光燒蝕法等現有方法,同時積極開發新的制造技術,特別是批量生產技術。細川公司展出的低溫連續燒結設備引起關注。它能以每小時數千克的速度制造粒徑在數十納米的單一和復合的超微粒材料。東麗和三菱化學公司應用大學開發的新技術能把制造碳納米材料的成本減至原來的1/10,兩三年內即可進入批量生產階段。

日本高度重視開發檢測和加工技術。目前廣泛應用的掃描隧道顯微鏡、原子力顯微鏡、近場光學顯微鏡等的性能不斷提高,并涌現了諸如數字式顯微鏡、內藏高級照相機顯微鏡、超高真空掃描型原子力顯微鏡等新產品??茖W家村田和廣成功開發出亞微米噴墨印刷裝置,能應用于納米領域,在硅、玻璃、金屬和有機高分子等多種材料的基板上印制細微電路,是世界最高水平。

日本企業、大學和研究機構積極在信息技術、生物技術等領域內為納米技術尋找用武之地,如制造單個電子晶體管、分子電子元件等更細微、更高性能的元器件和量子計算機,解析分子、蛋白質及基因的結構等。不過,這些研究大都處于探索階段,成果為數不多。

歐盟在納米科學方面頗具實力,特別是在光學和光電材料、有機電子學和光電學、磁性材料、仿生材料、納米生物材料、超導體、復合材料、醫學材料、智能材料等方面的研究能力較強。

中國在納米材料及其應用、掃描隧道顯微鏡分析和單原子操縱等方面研究較多,主要以金屬和無機非金屬納米材料為主,約占80%,高分子和化學合成材料也是一個重要方面,而在納米電子學、納米器件和納米生物醫學研究方面與發達國家有明顯差距。

4、納米技術產業化步伐加快

目前,納米技術產業化尚處于初期階段,但展示了巨大的商業前景。據統計:2004年全球納米技術的年產值已經達到500億美元,2010年將達到14400億美元。為此,各納米技術強國為了盡快實現納米技術的產業化,都在加緊采取措施,促進產業化進程。

美國國家科研項目管理部門的管理者們認為,美國大公司自身的納米技術基礎研究不足,導致美國在該領域的開發應用缺乏動力,因此,嘗試建立一個由多所大學與大企業組成的研究中心,希望借此使納米技術的基礎研究和應用開發緊密結合在一起。美國聯邦政府與加利福尼亞州政府一起斥巨資在洛杉礬地區建立一個“納米科技成果轉化中心”,以便及時有效地將納米科技領域的基礎研究成果應用于產業界。該中心的主要工作有兩項:一是進行納米技術基礎研究;二是與大企業合作,使最新基礎研究成果盡快實現產業化。其研究領域涉及納米計算、納米通訊、納米機械和納米電路等許多方面,其中不少研究成果將被率先應用于美國國防工業。

美國的一些大公司也正在認真探索利用納米技術改進其產品和工藝的潛力。IBM、惠普、英特爾等一些IT公司有可能在中期內取得突破,并生產出商業產品。一個由專業、商業和學術組織組成的網絡在迅速擴大,其目的是共享信息,促進聯系,加速納米技術應用。

日本企業界也加強了對納米技術的投入。關西地區已有近百家企業與16所大學及國立科研機構聯合,不久前又建立了“關西納米技術推進會議”,以大力促進本地區納米技術的研發和產業化進程;東麗、三菱、富士通等大公司更是紛紛斥巨資建立納米技術研究所,試圖將納米技術融合進各自從事的產業中。

歐盟于2003年建立納米技術工業平臺,推動納米技術在歐盟成員國的應用。歐盟委員會指出:建立納米技術工業平臺的目的是使工程師、材料學家、醫療研究人員、生物學家、物理學家和化學家能夠協同作戰,把納米技術應用到信息技術、化妝品、化學產品和運輸領域,生產出更清潔、更安全、更持久和更“聰明”的產品,同時減少能源消耗和垃圾。歐盟希望通過建立納米技術工業平臺和增加納米技術研究投資使其在納米技術方面盡快趕上美國。

第9篇

1、各國競相出臺納米科技發展戰略和計劃

由于納米技術對國家未來經濟、社會發展及國防安全具有重要意義,世界各國(地區)紛紛將納米技術的研發作為21世紀技術創新的主要驅動器,相繼制定了發展戰略和計劃,以發表和推進本國納米科技的發展。目前,世界上已有50多個國家制定了國家級的納米技術計劃。一些國家雖然沒有專項的納米技術計劃,但其他計劃中也往往包含了納米技術相關的研發。

(1)發達國家和地區雄心勃勃

為了搶占納米科技的先機,美國早在2000年就率先制定了國家級的納米技術計劃(NNI),其宗旨是整合聯邦各機構的力量,加強其在開展納米尺度的科學、工程和技術開發工作方面的協調。2003年11月,美國國會又通過了《21世紀納米技術研究開發法案》,這標志著納米技術已成為聯邦的重大研發計劃,從基礎研究、應用研究到研究中心、基礎設施的建立以及人才的培養等全面展開。

日本政府將納米技術視為“日本經濟復興”的關鍵。第二期科學技術基本計劃將生命科學、信息通信、環境技術和納米技術作為4大重點研發領域,并制定了多項措施確保這些領域所需戰略資源(人才、資金、設備)的落實。之后,日本科技界較為徹底地貫徹了這一方針,積極推進從基礎性到實用性的研發,同時跨省廳重點推進能有效促進經濟發展和加強國際競爭力的研發。

歐盟在2002—2007年實施的第六個框架計劃也對納米技術給予了空前的重視。該計劃將納米技術作為一個最優先的領域,有13億歐元專門用于納米技術和納米科學、以知識為基礎的多功能材料、新生產工藝和設備等方面的研究。歐盟委員會還力圖制定歐洲的納米技術戰略,目前,已確定了促進歐洲納米技術發展的5個關鍵措施:增加研發投入,形成勢頭;加強研發基礎設施;從質和量方面擴大人才資源;重視工業創新,將知識轉化為產品和服務;考慮社會因素,趨利避險。另外,包括德國、法國、愛爾蘭和英國在內的多數歐盟國家還制定了各自的納米技術研發計劃。

(2)新興工業化經濟體瞄準先機

意識到納米技術將會給人類社會帶來巨大的影響,韓國、中國臺灣等新興工業化經濟體,為了保持競爭優勢,也紛紛制定納米科技發展戰略。韓國政府2001年制定了《促進納米技術10年計劃》,2002年頒布了新的《促進納米技術開發法》,隨后的2003年又頒布了《納米技術開發實施規則》。韓國政府的政策目標是融合信息技術、生物技術和納米技術3個主要技術領域,以提升前沿技術和基礎技術的水平;到2010年10年計劃結束時,韓國納米技術研發要達到與美國和日本等領先國家的水平,進入世界前5位的行列。

中國臺灣自1999年開始,相繼制定了《納米材料尖端研究計劃》、《納米科技研究計劃》,這些計劃以人才和核心設施建設為基礎,以追求“學術卓越”和“納米科技產業化”為目標,意在引領臺灣知識經濟的發展,建立產業競爭優勢。

(3)發展中大國奮力趕超

綜合國力和科技實力較強的發展中國家為了迎頭趕上發達國家納米科技發展的勢頭,也制定了自己的納米科技發展戰略。中國政府在2001年7月就了《國家納米科技發展綱要》,并先后建立了國家納米科技發表協調委員會、國家納米科學中心和納米技術專門委員會。目前正在制定中的國家中長期科技發展綱要將明確中國納米科技發展的路線圖,確定中國在目前和中長期的研發任務,以便在國家層面上進行發表與協調,集中力量、發揮優勢,爭取在幾個方面取得重要突破。鑒于未來最有可能的技術浪潮是納米技術,南非科技部正在制定一項國家納米技術戰略,可望在2005年度執行。印度政府也通過加大對從事材料科學研究的科研機構和項目的支持力度,加強材料科學中具有廣泛應用前景的納米技術的研究和開發。

2、納米科技研發投入一路攀升

納米科技已在國際間形成研發熱潮,現在無論是富裕的工業化大國還是渴望富裕的工業化中國家,都在對納米科學、技術與工程投入巨額資金,而且投資迅速增加。據歐盟2004年5月的一份報告稱,在過去10年里,世界公共投資從1997年的約4億歐元增加到了目前的30億歐元以上。私人的納米技術研究資金估計為20億歐元。這說明,全球對納米技術研發的年投資已達50億歐元。

美國的公共納米技術投資最多。在過去4年內,聯邦政府的納米技術研發經費從2000年的2.2億美元增加到2003年的7.5億美元,2005年將增加到9.82億美元。更重要的是,根據《21世紀納米技術研究開發法》,在2005~2008財年聯邦政府將對納米技術計劃投入37億美元,而且這還不包括國防部及其他部門將用于納米研發的經費。

日本目前是僅次于美國的第二大納米技術投資國。日本早在20世紀80年代就開始支持納米科學研究,近年來納米科技投入迅速增長,從2001年的4億美元激增至2003年的近8億美元,而2004年還將增長20%。

在歐洲,根據第六個框架計劃,歐盟對納米技術的資助每年約達7.5億美元,有些人估計可達9.15億美元。另有一些人估計,歐盟各國和歐盟對納米研究的總投資可能兩倍于美國,甚至更高。

中國期望今后5年內中央政府的納米技術研究支出達到2.4億美元左右;另外,地方政府也將支出2.4億~3.6億美元。中國臺灣計劃從2002~2007年在納米技術相關領域中投資6億美元,每年穩中有增,平均每年達1億美元。韓國每年的納米技術投入預計約為1.45億美元,而新加坡則達3.7億美元左右。

就納米科技人均公共支出而言,歐盟25國為2.4歐元,美國為3.7歐元,日本為6.2歐元。按照計劃,美國2006年的納米技術研發公共投資增加到人均5歐元,日本2004年增加到8歐元,因此歐盟與美日之間的差距有增大之勢。公共納米投資占GDP的比例是:歐盟為0.01%,美國為0.01%,日本為0.02%。

另外,據致力于納米技術行業研究的美國魯克斯資訊公司2004年的一份年度報告稱,很多私營企業對納米技術的投資也快速增加。美國的公司在這一領域的投入約為17億美元,占全球私營機構38億美元納米技術投資的46%。亞洲的企業將投資14億美元,占36%。歐洲的私營機構將投資6.5億美元,占17%。由于投資的快速增長,納米技術的創新時代必將到來。

3、世界各國納米科技發展各有千秋

各納米科技強國比較而言,美國雖具有一定的優勢,但現在尚無確定的贏家和輸家。

(1)在納米科技論文方面日、德、中三國不相上下

根據中國科技信息研究所進行的納米論文統計結果,2000—2002年,共有40370篇納米研究論文被《2000—2002年科學引文索引(SCI)》收錄。納米研究論文數量逐年增長,且增長幅度較大,2001年和2002年的增長率分別達到了30.22%和18.26%。

2000—2002年納米研究論文,美國以較大的優勢領先于其他國家,3年累計論文數超過10000篇,幾乎占全部論文產出的30%。日本(12.76%)、德國(11.28%)、中國(10.64%)和法國(7.89%)位居其后,它們各自的論文總數都超過了3000篇。而且以上5國2000—2002年每年的納米論文產出大都超過了1000篇,是納米研究最活躍的國家,也是納米研究實力最強的國家。中國的增長幅度最為突出,2000年中國納米論文比例還落后德國2個多百分點,到2002年已經超過德國,位居世界第三位,與日本接近。

在上述5國之后,英國、俄羅斯、意大利、韓國、西班牙發表的論文數也較多,各國3年累計論文總數都超過了1000篇,且每年的論文數排位都可以進入前10名。這5個國家可以列為納米研究較活躍的國家。

另外,如果歐盟各國作為一個整體,其論文量則超過36%,高于美國的29.46%。(2)在申請納米技術發明專利方面美國獨占鰲頭

據統計:美國專利商標局2000—2002年共受理2236項關于納米技術的專利。其中最多的國家是美國(1454項),其次是日本(368項)和德國(118項)。由于專利數據來源美國專利商標局,所以美國的專利數量非常多,所占比例超過了60%。日本和德國分別以16.46%和5.28%的比例列在第二位和第三位。英國、韓國、加拿大、法國和中國臺灣的專利數也較多,所占比例都超過了1%。

專利反映了研究成果實用化的能力。多數國家納米論文數與專利數所占比例的反差較大,在論文數最多的20個國家和地區中,專利數所占比例超過論文數所占比例的國家和地區只有美國、日本和中國臺灣。這說明,很多國家和地區在納米技術研究上具備一定的實力,但比較側重于基礎研究,而實用化能力較弱。

(3)就整體而言納米科技大國各有所長

美國納米技術的應用研究在半導體芯片、癌癥診斷、光學新材料和生物分子追蹤等領域快速發展。隨著納米技術在癌癥診斷和生物分子追蹤中的應用,目前美國納米研究熱點已逐步轉向醫學領域。醫學納米技術已經被列為美國國家的優先科研計劃。在納米醫學方面,納米傳感器可在實驗室條件下對多種癌癥進行早期診斷,而且,已能在實驗室條件下對前列腺癌、直腸癌等多種癌癥進行早期診斷。2004年,美國國立衛生研究院癌癥研究所專門出臺了一項《癌癥納米技術計劃》,目的是將納米技術、癌癥研究與分子生物醫學相結合,實現2015年消除癌癥死亡和痛苦的目標;利用納米顆粒追蹤活性物質在生物體內的活動也是一個研究熱門,這對于研究艾滋病病毒、癌細胞等在人體內的活動情況非常有用,還可以用來檢測藥物對病毒的作用效果。利用納米顆粒追蹤病毒的研究也已有成果,未來5~10年有望商業化。

雖然醫學納米技術正成為納米科技的新熱點,納米技術在半導體芯片領域的應用仍然引人關注。美國科研人員正在加緊納米級半導體材料晶體管的應用研究,期望突破傳統的極限,讓芯片體積更小、速度更快。納米顆粒的自組裝技術是這一領域中最受關注的地方。不少科學家試圖利用化學反應來合成納米顆粒,并按照一定規則排列這些顆粒,使其成為體積小而運算快的芯片。這種技術本來有望取代傳統光刻法制造芯片的技術。在光學新材料方面,目前已有可控直徑5納米到幾百納米、可控長度達到幾百微米的納米導線。

日本納米技術的研究開發實力強大,某些方面處于世界領先水平,但尚未脫離基礎和應用研究階段,距離實用化還有相當一段路要走。在納米技術的研發上,日本最重視的是應用研究,尤其是納米新材料研究。除了碳納米管外,日本開發出多種不同結構的納米材料,如納米鏈、中空微粒、多層螺旋狀結構、富勒結構套富勒結構、納米管套富勒結構、酒杯疊酒杯狀結構等。

在制造方法上,日本不斷改進電弧放電法、化學氣相合成法和激光燒蝕法等現有方法,同時積極開發新的制造技術,特別是批量生產技術。細川公司展出的低溫連續燒結設備引起關注。它能以每小時數千克的速度制造粒徑在數十納米的單一和復合的超微粒材料。東麗和三菱化學公司應用大學開發的新技術能把制造碳納米材料的成本減至原來的1/10,兩三年內即可進入批量生產階段。

日本高度重視開發檢測和加工技術。目前廣泛應用的掃描隧道顯微鏡、原子力顯微鏡、近場光學顯微鏡等的性能不斷提高,并涌現了諸如數字式顯微鏡、內藏高級照相機顯微鏡、超高真空掃描型原子力顯微鏡等新產品??茖W家村田和廣成功開發出亞微米噴墨印刷裝置,能應用于納米領域,在硅、玻璃、金屬和有機高分子等多種材料的基板上印制細微電路,是世界最高水平。

日本企業、大學和研究機構積極在信息技術、生物技術等領域內為納米技術尋找用武之地,如制造單個電子晶體管、分子電子元件等更細微、更高性能的元器件和量子計算機,解析分子、蛋白質及基因的結構等。不過,這些研究大都處于探索階段,成果為數不多。

歐盟在納米科學方面頗具實力,特別是在光學和光電材料、有機電子學和光電學、磁性材料、仿生材料、納米生物材料、超導體、復合材料、醫學材料、智能材料等方面的研究能力較強。

中國在納米材料及其應用、掃描隧道顯微鏡分析和單原子操縱等方面研究較多,主要以金屬和無機非金屬納米材料為主,約占80%,高分子和化學合成材料也是一個重要方面,而在納米電子學、納米器件和納米生物醫學研究方面與發達國家有明顯差距。

4、納米技術產業化步伐加快

目前,納米技術產業化尚處于初期階段,但展示了巨大的商業前景。據統計:2004年全球納米技術的年產值已經達到500億美元,2010年將達到14400億美元。為此,各納米技術強國為了盡快實現納米技術的產業化,都在加緊采取措施,促進產業化進程。

美國國家科研項目管理部門的管理者們認為,美國大公司自身的納米技術基礎研究不足,導致美國在該領域的開發應用缺乏動力,因此,嘗試建立一個由多所大學與大企業組成的研究中心,希望借此使納米技術的基礎研究和應用開發緊密結合在一起。美國聯邦政府與加利福尼亞州政府一起斥巨資在洛杉礬地區建立一個“納米科技成果轉化中心”,以便及時有效地將納米科技領域的基礎研究成果應用于產業界。該中心的主要工作有兩項:一是進行納米技術基礎研究;二是與大企業合作,使最新基礎研究成果盡快實現產業化。其研究領域涉及納米計算、納米通訊、納米機械和納米電路等許多方面,其中不少研究成果將被率先應用于美國國防工業。

美國的一些大公司也正在認真探索利用納米技術改進其產品和工藝的潛力。IBM、惠普、英特爾等一些IT公司有可能在中期內取得突破,并生產出商業產品。一個由專業、商業和學術組織組成的網絡在迅速擴大,其目的是共享信息,促進聯系,加速納米技術應用。

日本企業界也加強了對納米技術的投入。關西地區已有近百家企業與16所大學及國立科研機構聯合,不久前又建立了“關西納米技術推進會議”,以大力促進本地區納米技術的研發和產業化進程;東麗、三菱、富士通等大公司更是紛紛斥巨資建立納米技術研究所,試圖將納米技術融合進各自從事的產業中。

歐盟于2003年建立納米技術工業平臺,推動納米技術在歐盟成員國的應用。歐盟委員會指出:建立納米技術工業平臺的目的是使工程師、材料學家、醫療研究人員、生物學家、物理學家和化學家能夠協同作戰,把納米技術應用到信息技術、化妝品、化學產品和運輸領域,生產出更清潔、更安全、更持久和更“聰明”的產品,同時減少能源消耗和垃圾。歐盟希望通過建立納米技術工業平臺和增加納米技術研究投資使其在納米技術方面盡快趕上美國。

相關文章
相關期刊
主站蜘蛛池模板: 国产精品久久久久久久久鸭 | 日韩去日本高清在线 | 国产成人一级 | 久久久久久久久久免观看 | 免费网站黄成人影院 | 日产国语一区二区三区在线看 | 国产一区二区三区免费观看 | 91精品国产自产91精品 | 免费在线观看黄视频 | 国产精品久久久久久久久久久久 | 成人在线激情网 | 国产精品国产亚洲精品看不卡 | 精品伊人久久久久7777人 | 免费观看美女视频的网站 | 无圣光私拍一区二区三区 | 色99色 | 久久国产午夜精品理论篇小说 | 不卡视频一区二区三区 | 精品不卡一区中文字幕 | 国产午夜在线视频 | 色婷婷基地 | 日本不卡一区在线 | 精品久久久一二三区 | 久久精品视频免费播放 | 色欲影院| 国产成人aa视频在线观看 | 婷婷综合视频 | 免费看电影网址 | gav男人天堂| 久久久久久久久久国产精品免费 | 日韩视频一区 | 9191精品国产免费不久久 | 久久久久久久久久久大尺度免费视频 | 欧美一区二区自偷自拍视频 | 免费国产va在线观看视频 | 日韩男女视频 | 五夜丁香| 激情亚州 | 成人影院一区二区三区 | 色综合在 | 你懂的在线视频观看 |