時間:2022-10-08 21:50:51
引言:易發表網憑借豐富的文秘實踐,為您精心挑選了九篇處理工藝論文范例。如需獲取更多原創內容,可隨時聯系我們的客服老師。
通過降低熱處理的工藝溫度能有效減少由此產生的變形。降低工藝溫度,能相對減少工件的高溫強度,并增強其塑性抗力以及抗應力變形、抗淬火變形、抗高溫蠕變的能力。降低工藝溫度,還能夠減少工件加熱、冷卻的溫度區間。溫度區間減少后,由熱處理引起的各部位溫度的一致性也會增強,而溫度的不一致性正是引起工件組織應力和熱應力的根本原因,隨著溫度不一致性減少,由此而導致的變形也會相應減少。此外,在降低工藝溫度并縮短工藝時間的情況下,將縮短工件的高溫蠕變時間,從而減少變形。科學合理的熱處理工藝是減小熱處理變形的關鍵因素。由圖1可以看出,在650%球化退火后的硬度梯度和740%球化+680%等溫處理的硬度梯度結果相近,未經球化退火的齒輪的硬度較前兩個低。這是因為球化退火可使淬火后滲層表面殘留奧氏體量減少,從而提高了齒表面硬度,因此20CrNi2MoA鋼齒圈滲碳后應采用球化退火工藝,同時為減小熱處理變形,在650℃球化退火效果更好。
2變形的其他影響因素及減小措施
2.1預備熱處理在熱處理過程中,有可能引起內孔的變形增大,如存在混晶、大量索氏體或魏氏組織以及過高的正火溫度。因此需要對正火溫度進行控制,也可以采用等溫退火的方式來對鍛件進行處理。金屬最終的變形量與很多因素有關,如淬火前進行的調質處理以及退火和正火。金屬產生變形進而導致金屬組織結構也發生變化。研究和實踐表明,為使金屬組織結構均勻,在進行正火處理時采用等溫淬火是一種有效的減小其變形量的措施。
2.2運用合理的冷卻方法金屬淬火后冷卻過程的控制也是必須考慮的一個因素。淬火后采用油進行冷卻,因此其變形直接受到油的冷卻能力的影響。通常來說,熱油淬火產生的變形小于冷油淬火,一般控制在100+20%。同時,變形還受到淬火的攪拌方式和速度的影響。在進行金屬熱處理時,金屬產生的應力及模具的變形與冷卻的速度和冷卻的均勻程度有關。過快的冷卻速度和不均勻冷卻都會導致應力及模具變形的增大。因此,應盡量采用預冷,不過需要注意的是應保證模具的硬度要求。為減少熱應力和組織應力,可以選用分級冷卻淬火,這種方式對形狀復雜的工件十分有效,能顯著減少其變形。采用等溫淬火的方式,則適用于十分復雜并且有較高精度要求的工件,能使金屬變形顯著減少。
2.3零件結構要合理改善零件的結構是減少熱處理變形的關鍵環節。經過熱處理后的工件,其厚度不同的部分冷卻的速度也是不同的。因此,在滿足工件使用性能的前提下,應使工件的厚度差別不能過大,盡量使零件的截面均勻,減少由應力集中導致的過渡區的畸變和開裂現象。保持結構與材料成分和組織的對稱性,避免尖銳棱角、溝槽等。此外,采用預留加工量的方式也是減少厚度不均勻零件變形的有效方式之一。
2.4采用合理的裝夾方式及夾具通過采用合理的裝夾方式和夾具,能夠使工件獲得均勻的加熱和冷卻,從而減少熱應力以及組織應力的不均,有效減小熱處理導致的工件變形。
2.5機械加工工件的加工通常需要經過很多道工序,如果熱處理加工是最后的工序,則應控制其畸變的允許值,使之滿足圖樣規定的工件尺寸。依據上道工序的加工尺寸來對畸變量加以確定,因此掌握畸變規律尤為重要,為使熱處理導致的畸變處于合格的范圍,在進行熱處理前應對尺寸進行預修正。如果熱處理是中間的工序,機加工余量和熱處理畸變量之和即為熱處理前的加工余量。導致熱處理變形的因素多而復雜,因此相較于機械加工余量來說,熱處理的加工余量不易確定,在實際加工中應留出足夠的加工余量用于機械加工。
2.6采用合適的介質在熱處理的過程中,介質的選擇也十分重要,應選擇有利于減小變形量的介質。研究和實驗表明,硬度要求相同的情況下,采用油性介質是更好的選擇。不同介質具有不同的冷卻速度,在其他條件相同的情況下,同油性介質相比較,水性介質的冷卻速度較快。此外,水溫的變化也會對介質的冷卻性能造成影響,其變化對油性介質冷卻特性產生的影響較小。熱處理條件相同的情況下,水性介質淬火后會產生相對較大的變形量。
3結束語
根據廢水處理工藝流程,養鴨污水直接泵入細格柵,經細篩網分隔出鴨毛等污物后流入水解池進行大分子水解酸化降解,然后流入生物接觸氧化池(設有微孔曝氣裝置),使小分子有機物進一步降解,達到排放標準,同時完成氨氮硝化,通過混合液回流,使硝態氮在水解池中還原成氮氣,降低NH3-N含量,接觸氧化池出水經斜板沉淀池泥水分離后清水自流入水生植物塘,經進一步吸附后泵回至養鴨池。
2工藝特點
2.1廢水處理工藝的選擇原則
在工藝選擇和設計過程中充分考慮污水特點,并根據同類廢水處理設計和實踐經驗,進行主體工藝選擇時,注意重點考慮以下原則。一是采用生化處理原則。采用水解酸化結合生物接觸氧化工藝流程,脫氮方式采用A/O泥膜法工藝。二是采用先進可靠的系統設備。降低系統維護工作量,保證系統長期正常運轉。三是采用適宜的自動化控制系統。保證處理效果和減少勞動力需求。
2.2廢水處理主體工藝的確定
2.2.1水解酸化工藝
水解池內培養厭氧菌,廢水經厭氧菌降解,使大部分大分子有機物分解為小分子有機物。
2.2.2生物接觸氧化工藝
好氧生物處理主要有活性污泥法和生物膜法。生物膜法工藝主要采用生物接觸氧化法,生物接觸氧化工藝占地面積較小,不會發生活性污泥法中易產生的污泥膨脹現象,運行較為穩定、簡單。該工藝在生活廢水處理中已經得到廣泛應用,效果較好。處理工藝成熟可靠、具有較高的緩沖水質水量沖擊能力,采用混合液回流進行硝化、反硝化使NH3-N達到排放標準。
3工藝優勢
3.1社會效益
項目實施后,通過政府推介、客戶指導、例行蛋鴨養殖技術人員培訓等方式積極宣傳本項目的成功經驗,普及開展生態循環農業的必要性,促進養殖戶、孵化場增產增收,加速蛋鴨養殖科學化、現代化。通過技術培訓和宣傳,極大提高了廣大養殖戶的環保意識,減少養殖業所帶來的環境污染。
3.2經濟效益
1.1球化退火鍛造后球化退火的主要作用是為接下來的熱處理做準備,經過球化退火的材料能夠效降低材料的硬度,提高其韌度,其塑韌性有了明顯的提高,同時減小了對淬火溫度的敏感性。不過在進行球化退火前要保證組織為細片狀珠光體,如果不能夠達到該要求,要在進行球化退火前對其進行處理。按照有關規定,在未進行球化退火的組織應在2-5級5范圍內才為合格。
1.2淬火工藝采用等溫淬火工藝能夠很好地滿足圓板牙的工藝要求。在利用等溫淬火進行工藝加工前,要在600℃~650℃的高溫下進行預熱,預熱的目的是降低圓板牙發生脫碳的幾率。根據未落碳化物數量及原材料的球化級別、加工尺寸等諸多因素確定淬火加熱的溫度。尺寸較大的圓板牙一般情況下,選擇低溫淬火加熱處理。由于W18Gr4V中含有Si元素,而該元素在進行加熱的過程中極易發生脫碳,所以在加熱的過程中要使用較特殊的加熱爐,如鹽浴爐、可控氣氛爐或真空爐,其中鹽浴爐的脫氧作用可以有效降低圓板牙的脫碳傾向。保證適當的等溫停留時間有助于提高鋼的強韌性。等溫停留時間一般維持30~45min,如果超出該范圍其性能將明顯降低。這主要是因為下貝氏體和殘余奧氏體量過多。分析上表可發現,在進行淬火冷卻時,要在硝鹽槽中放入冷卻水套或循環水管,以保證工件和工裝帶的溫度平衡。
1.3回火工藝回火的主要作用是根據不同的工作性能要求,使其硬度、強度、塑性和韌性適當。前文中已經介紹Si、Cr元素可以有效提高鋼的回火穩定性。
2圓板牙的熱處理質量檢驗
2.1回火缺陷在經回火處理時,如果不能嚴格控制回火溫度,將會出現鋼的硬度過高或過低。不過當回火溫度控制適當,這些問題就可以解決了。如果一次裝爐量過多,或選用加熱爐不當,將會出現硬度不均勻。當回火前工件內應力不平衡時,回火工件很可能發生變形。
2.2板牙熱處理后變形分析板牙經過熱處理后將會變形,目前,針對這一問題有兩種解決方法:一種是在淬火前應對板牙進行弼質,使其內應力減到最小,保證其之直徑大小同螺紋的中徑尺寸相同。要保證棒料尺寸適當,尺寸過小,則會造成金屬材料的浪費;尺寸過大,將會導致棒料扭曲、折斷。被切削捧料的材料性能、切削速度,對于螺紋外徑均有一定的影響。
2.3熱處理過程金相組織分析W18Gr4V材料只有經過正火或球化退火才能進行粗加工,圖2即為球化退火后的顯微組織。浸蝕方法:4%硝酸酒精溶液浸蝕組織組成物:白色是珠光體,黑色是滲碳體。W18Gr4V在經淬火后的顯微組織圖如圖3,其浸蝕方法如下:4%硝酸酒精溶液浸蝕組織組成物:M+A
2.4控制螺紋淬火的注意事項控制螺紋淬火的注意事項:在了解了螺孔及松緊情況后方可進行處理;利用經過脫氧后的鹽浴爐對圓板牙進行預熱和最終加熱,同時要保證鹽浴中有害物質不會造成螺紋的腐蝕;要保證工件的均勻加熱;對特大型板牙(大于等于M80)的溫度一般選擇為150°C左右。
3結語
1、除油除銹
優質的磷化膜只有在徹底去除了油物、銹、氧化皮等異物的工件表面上形成。因為殘留在工件表面的油污、銹蝕、氧化皮等會嚴重阻礙磷化膜的生長。此外,還會影響涂層的附著力,干燥性能、裝飾性能和耐蝕性能,徹底去除這些異物是磷化的必要條件。
除油和除銹是磷化之前的兩個基本工序,相對而言,油比銹的危害性大,而且有油的工件直接影響除銹速度,所以,除銹應在除油的基礎上進行,但對于油少銹多的工件也可以將除油與除銹兩個基本工序合二為一,在一個槽中同時完成除油除銹工序,可縮短生產線,降低設備和廠房投資費用,但處理質量不如分槽好,對要求不高的場合可采用。采用此工序后,除油劑也應選擇酸性藥劑和除銹劑配套使用。除銹仍采用鹽酸,鹽酸除銹速度快,除銹干凈徹底,對氧化皮也有很好的去除功能,且又是常溫使用,弊病是鹽酸除銹酸霧較大,有害健康,環境污染嚴重。隨著的,環境保護和勞動條件的改善已成為人們共同關心的。因此,在選擇藥劑時應考慮環境保護的需要。所以選擇除油劑時要求配制簡單,去污能力強,不含常溫下難清洗的氫氧化鈉,硅酸鹽,OP乳化劑等成分,常溫下易水洗,不含毒性物質,不產生有害氣體,勞動條件好;選擇除銹劑時要求內含促進劑,緩蝕劑和抑制劑,能提高除銹速度,防止工件產生過腐蝕和氫脆,能較好的抑制酸霧。尤其值得重視的是酸霧抑制,酸洗除銹過程中產生的酸霧,不僅腐蝕設備和廠房,污染環境,而且可引起人們牙齒腐蝕,牙結膜發紅,流淚,疼痛,咽喉干燥,咳嗽等癥狀,所以,有效抑制酸霧,不但是環保的需要,還是本單位自身的需要。
考慮上述要求,經篩選,除油和除銹劑我們采用了
祥和磷化公司的XH-16C除油除銹添加劑與驗算配制而成,常溫下使用,處理時間10-30min,它能提高除銹速度,防止工件產生過腐蝕和氫脆,能較好的抑制酸霧。
配方:XH-16C4%+HCL(35%)60%+H2O
2、水洗
除油除銹后的水洗,雖然屬于涂裝前的輔助工序,但同樣需引起足夠的重視。除油除銹后工件表面易附著某些非離子表面活性劑,及CL-等。這些物質若清洗不徹底,就可能引起磷化膜變薄,產生線狀缺陷,甚至磷化不上。因此,要提高除油除銹后的水洗質量。須經多次漂洗,采用兩道水洗,時間1-2min,并經常更換清水,保證清水PH值在5-7值之間。
3、磷化
所謂磷化,是指把金屬工件經過含有磷酸二氫鹽的酸性溶液處理,發生化學反應而在其表面生成一層穩定的不溶性磷酸鹽膜層的,所生成的膜稱為磷化膜。磷化膜的主要目的是增加涂膜附著力,提高涂層耐蝕性。磷化的方法有多種,按磷化時的溫度來分,可分為高溫磷化(90-98℃),中溫磷化(60-75℃),低溫磷化(35-55℃)和常溫磷化。
為提供良好的涂裝基底,要求磷化膜厚度適宜,結晶致密細小。
中、高溫磷化工藝,雖然磷化速度快,磷化膜耐蝕性好,但磷化膜結晶粗大,掛灰重,液面揮發快,槽液不穩定,沉渣多,而低、常溫磷化工藝所形成的磷化膜結晶細致,厚度適宜,膜間很少夾雜沉渣物,吸漆量少,涂層光澤度好,可大大改善涂層的附著力、柔韌性、抗沖擊性等,更能滿足涂層對磷化膜的要求。值得注意的是,過去一直認為磷化膜厚,涂裝后涂層的耐蝕性高,磷化膜本身在整個涂裝體系中并不單獨承擔多大的耐蝕作用,它主要起到使漆膜具有強粘附性,而整個涂層系統的耐蝕力則主要取決于漆膜的耐蝕力以及漆膜與磷化膜的優良配合所形成的強粘附力。
磷化液一般由主鹽、促進劑和中和劑所組成。過去使用的磷化液,大多采用亞硝酸鈉(NaNO2)作促進劑,效果十分年、明顯,但在NaNO2在磷化液中有很大危害:一是磷化液的穩定性,NaNO2在酸性條件下極不穩定,在極短的時間內就分解了。因此,不得不經常添加。NaNO2的這種特性,往往引起磷化液的主鹽不穩定,磷化液沉淀較多,磷化膜掛灰嚴重,槽液控制困難,磷化質量不穩定;二是NaNO2是世界公認的致癌物質,長期接觸危害人體健康,環境污染嚴重。解決的方法:一是減少NaNO2的用量;二是尋找替代物。
配方:XH-1B4%+H2O
4、鈍化
磷化膜的鈍化技術,在北美和歐洲國家被廣泛,采用鈍化技術是基于磷化膜自身特點決定的,磷化膜較薄,一般在1-4g/m2,最大不超過10g/m2,其自由孔隙面積大,膜本身的耐蝕力有限。有的甚至在干燥過程中就迅速生黃銹,磷化后進行一次鈍化封閉處理,可以是磷化膜孔隙中暴露的金屬進一步氧化,或生成鈍化層,對磷化膜可以起到填充、氧化作用,使磷化膜穩定于大氣之中。
關鍵詞:水處理循環水工藝流程技術改進
Abstract:Thetectnicalflowprocess,equipmenttipeandsituactionofuseareintroduced.Andsomeequipmentsinthemudpoolareimprovedintechnology.
KeyWords:watertreatment;circulatingwater;technicalflowprocess;technologicalimprovement
1、概述
南昌鋼鐵有限責任公司棒材廠成立投產于2001年1月,是年產60萬噸直徑為12~32㎜的螺紋鋼及直徑為18~32㎜的圓鋼棒材生產線,該廠自動化程度高、產材產量高,所用的系列冷卻水為循環的工業水,并做到全部內部循環、不外排。循環水分為濁水循環、凈水循環兩個系統,現總用水量2020m3/h,其中濁環水900m3/h,凈環水1120m3/h.水處理主要負責冷卻水的循環、水質處理、加壓、降溫等工作。
4、水處理系統概況
4.1濁環水系統
該系統供粗、中、精軋機組、控制水冷裝置及沖氧化鐵皮等用水。供水量900m3/h.其回水經氧化鐵皮溝自流至旋流沉淀池,沉淀后一部分經4M泵加壓至車間沖氧化鐵皮;另一部分經1-3M泵加壓至化學除油器進行除油和二次沉淀處理,除油、沉淀后,進入濁熱水池,再用5D泵加壓至冷卻塔冷卻,冷卻后自流至濁冷水池,最后用3D、4D泵加壓至用戶循環使用。
化學除油沉淀器底部污泥用排污閥排出流至污泥池,經污泥泵加壓抽至板框壓濾機壓濾脫水,脫水后泥餅由廠方綜合利用。污泥量1300t/a.
4.2凈環水系統
該循環系統主要供軋線直流電機、液壓、加熱爐冷卻、進出爐輥道等所需的間接冷卻水。經使用后的水只是水溫略有升高,經冷卻處理后即可使用。凈環水量1120m3/h.凈環水設施有循環水泵房、吸水井、冷卻塔等。
為保證系統水質,系統中設有GSL-22000×7100125t/h自動清洗濾水器進行旁通過濾。
4.3給排水系統設施
4.3.1旋流沉淀池及濁水泵房
漩流池及濁水泵房合建。
濁水泵房內設兩組水泵。一組為化學除油器供水泵組,即1、2、3M泵,型號為250LC-32立式長軸泵(Q=480m3/h,75Kw)共三臺,兩用一備;一組為沖氧化鐵皮泵組,即4M泵,型號為200LC2-46立式長軸泵(Q=300m3/h,75Kw)共一臺,不設備用泵。并旋流池上部設一抓斗吊鉤兩用橋式起重機,用于抓取其內的氧化鐵皮。
4.3.2化學除油器及污泥脫水間
設有MHCYG-IV型化學除油器3臺,設計處理水量Q=400m3/h,N=3Kw.
XMG50/800板框壓濾機一臺,其中過濾面積S=50㎡,N=5.5Kw.
MY3.2-4-AHA42×3加藥裝置兩條。
4.3.3循環水泵房及水池
循環水泵房及水池呈南北布置,共有四個水池。一個凈環水熱水池,一個凈環水冷水池,一個濁環水冷水池,一個濁環水熱水池。泵房內東西布置設有五組共14臺水泵。
第一組:凈環水熱水泵組(1D),將凈環水熱水池熱水抽至凈環水冷卻塔冷卻,再自流至凈環水冷水池。泵型號250S-39(Q=485m3/h,N=75Kw)共三臺,兩用一備。
第二組:凈環水供水泵組(2D),將凈環水冷水池中的水抽至棒材廠各冷卻設備用水點冷卻設備后再用管道流至凈環熱水池。,泵型號250S-65A(Q=468m3/h,N=110KW)共三臺,兩用一備。
第三組:濁環水供水泵組(3D),將濁環水冷水池的水抽至棒材廠軋機冷卻用,再經軋機沖渣溝流至旋流沉淀池。泵型號300S-58A(Q=720m3/h,N=155Kw)共兩臺,一用一備。
第四組:濁環水穿水冷卻供水泵組(4D),將濁環水冷水池的水抽至棒材廠軋機穿水冷卻用,再經軋機沖渣溝流至旋流沉淀池。泵型號200S-43×3(Q=288m3/h,N=155Kw)共三臺,兩用一備。
第五組:濁環水熱水泵組(5D),將濁環水熱水池熱水抽至濁環水冷卻塔冷卻,再自流至濁環水冷水池。泵型號250S-39(Q=485m3/h,N=75Kw)共三臺,兩用一備。
泵房屋頂設有兩組冷卻塔,第一組為凈環水冷卻塔,型號為MBZ-1共兩臺,第二組為濁環水冷卻塔,型號為MBNW-1共三臺。
5、技術改進
從棒材廠投產以來,水處理系統運行正常,水量、水壓、水質、水溫處理都符合要求,能順利配合生產需要,滿足生產要求。但原設計的污泥池沉積的污泥用污泥泵抽至板框壓濾機進行污泥壓濾脫水一直是個問題,不能正常進行。原因主要是原設計的抽污泥泵是潛水式的,污泥池沒有攪拌設施,排污后污泥沉淀于池底。污泥的主要成分是氧化鐵皮,密度大,沉底易結塊,很快就將污泥泵頭堵死,使得污泥泵不能工作。污泥池的污泥只能靠定期的人工挖掘,既浪費大量的成本,又對環境衛生造成污染,在人工清泥的過程中會影響日常排污工作的開展。
鑒于此,對污泥池進行了改造。將已壞的污泥泵拆除,并安裝了一臺自控自吸泵于地面作為抽污泥泵,其型號為80NFB-C1(Q=50,N=22Kw)
進水管徑DN=80mm,出水管徑DN=50mm,吸水管下伸至距污泥池底約0.8米,出水管接至板框壓濾機。并在原污泥泵兩側1米處安裝兩臺和污泥泵同樣的自控自吸泵用于攪拌污泥,其出水管設計成螺旋式,下伸長至距池底部0.4米,并在螺旋式出水管表面均勻分布直徑30mm小孔,以增加出水面積,從而形成螺旋式攪拌。
在操作規程中規定:排污后沉淀30分鐘,用清水泵抽掉上部清水,然后開兩臺攪拌機攪拌30分鐘,再開抽污泥泵抽污泥,同時攪拌機泵一直處于攪拌狀態,防止污泥沉淀結塊,至抽完為止為一操作循環周期。如此循環操作一天進行兩次。解決了污泥去除問題。
此項技術改造總投資5萬元,取得較好效果,排污工作正常進行,污泥不再需人工清理,每年可節約成本10萬元。
1.1生鐵中磷含量對曲軸疲勞強度的影響對于球墨鑄鐵爐料而言,其中的生鐵成分、回爐鐵成分以及廢鋼中的磷成分在鐵水熔煉過程當中會以恒定量的方式得到保留。同時,過量的磷成分多富集于晶界,主要表現形式為二元磷共晶或者是三元磷共晶。無論其表現為哪種形式,都具有脆性相的特點,由此會導致球墨鑄鐵的塑性指標明顯降低,最終誘發曲軸的早期斷裂。已有研究中對發生斷裂問題的曲軸進行分析,分析結果顯示:曲軸正火采用部分奧氏體化工藝,通過此種方式獲得鐵素體組織(此類鐵素體組織多為破碎形態)。但從斷軸分析的角度上來說,此部分檢出的磷成分含量多在0.07~0.10%范圍內。通過疲勞試驗所得出的結果反映,該曲軸正常運行工況條件下的疲勞強度極限值僅為8050.0kg•cm,無法滿足設計要求。其原因在于曲軸制造使用了本地生鐵作為的球鐵爐料。在取消該環節后曲軸質量自然可得到提高。
1.2鑄造縮松對曲軸疲勞強度的影響已有研究資料中報道某廠曲軸曾大量出現斷裂問題。從曲軸外觀上觀察得知,導致斷裂的主要原因是在曲軸連桿軸頸位置有鑄造縮松問題,且肉眼可見。分析其成因是:在冷鐵供應存在問題的條件下,曲軸造型省略了補縮所使用的冷鐵。在恢復冷鐵工藝后,曲軸鑄造縮松問題得到了圓滿的解決。由此可見,鑄造縮松對于曲軸疲勞強度的影響是非常顯著的。
1.3黑色帶層及灰斑對曲軸疲勞強度的影響在常規工藝條件下,球墨鑄鐵曲軸斷口多呈現出灰色或銀灰色,曲軸本體以及抗拉試棒斷口同樣應當有此類表現。對于黑色帶層問題而言,其主要是受到灰斑在疲勞試驗曲軸軸頸往復式運動的影響而形成的,而灰斑的產生則主要是受到了鐵水中硅偏析的影響。以往研究中在對某批次球墨鑄鐵曲軸進行疲勞試驗的過程當中發現曲軸斷面出現了異常的黑色層以及灰斑。雖然此種問題在球墨鑄鐵曲軸中相對比較少見,但同樣屬于內部缺陷的一種表現形式,此問題的出現導致了曲軸疲勞強度受到不良影響,有黑色帶層或灰斑問題的曲軸在正常使用過程當中可能提前出現疲勞裂紋,導致抗疲勞強度的下降。
2熱處理工藝對球墨鑄鐵曲軸疲勞強度的影響分析
2.1正火和中頻淬火工藝對曲軸疲勞強度的影響已有研究中顯示,對于球墨鑄鐵曲軸而言,在經過高溫正火處理后,能夠將其中所存在的游離狀態滲碳體消除掉,從而能夠起到調整基體中鐵素體以及珠光體形態,以及兩者構成比例的目的。通過這種方式,使球墨鑄鐵曲軸的綜合力學性能得到了提升,促進了抗疲勞強度的改善。同時,在球墨鑄鐵曲軸制造過程當中,通過進行中頻淬火處理的方式,能夠使球墨鑄鐵曲軸表面形成具有一定深度的淬硬層,其對于改善曲軸自身耐磨性能有重要意義。但也有研究中認為:傳統的非圓角淬火工藝下會導致曲軸淬火區與非淬火區交界位置產生失衡且反向的應力關系,并對疲勞強度造成不良影響。因此,在引入中頻淬火工藝的過程當中,需要盡量選擇圓角淬火工藝,達到滿意的處理效果。
2.2等溫淬火工藝對曲軸疲勞強度的影響在球墨鑄鐵曲軸的生產過程當中,通過應用等溫淬火工藝的方式,能夠使曲軸獲得主要的貝氏體成分,同時還可形成一定的馬氏體組織以及殘余奧氏體組織,力學性能上具有較高的強度以及韌性水平。已有研究資料中報道,針對受到化學成分偏離影響而造成球墨鑄鐵曲軸疲勞強度的不足的問題,通過應用等溫淬火工藝的方式,解決了曲軸在熱處理上的質量問題。等溫淬火工藝的應用除了對改善球墨鑄鐵曲軸疲勞強度水平以外,還對提高曲軸自身耐磨性有重要價值,由此也有效延長了曲軸的使用壽命,綜合效益確切。
2.3氧氮化工藝對曲軸疲勞強度的影響從化學處理的角度上來說,在球墨鑄鐵曲軸的制造生產工藝中,通過對曲軸進行氧氮化處理的方式,能夠使曲軸表面獲得具有高氮特點的化合物層,同時還可形成具有飽和特點的氧擴散層。受到氧成分以及氮成分滲入的影響,使得球墨鑄鐵曲軸表面層的化學成分發生改變,與之相對應的顯微結構也有了非常顯著的提升趨勢,曲軸整體的耐磨性能以及耏疲勞性能均得到了有效的改善。需要注意的一點是,對于經過氧氮化處理的球墨鑄鐵曲軸而言,其抗疲勞水平的提高很大程度上會受到氧化層擴散水平的影響,在氮化處理后快速冷卻,并在擴散層中形成飽和固溶體,或是形成高水平的殘余壓應力都能夠促進疲勞強度的提高。正是由于在氧氮化工藝處理下,曲軸表面能夠形成較深的擴散層,故而對延長球墨鑄鐵使用壽命也有相當重要的意義與價值。
3結束語
本試驗對3種工藝處理后Fe-Co合金的磁性能進行了比較,具體見表1。3種熱處理工藝的具體制度分
別為:真空熱處理真空度優于10-2Pa,隨爐升溫,到溫后保溫2h,氬氣淬火,冷卻速度300℃/h。氫氣保護熱處理加熱爐到溫后將加熱容器馬弗罐入爐,零件到溫后保溫2h,罐體出爐空冷至200℃,全程高純氫保護,氫氣露點低于-40℃。氫氣保護磁場熱處理加熱爐到溫后將加熱容器馬弗罐入爐,零件到溫后保溫1.5h后施加環形磁場,保持0.5h后磁場停止,罐體出爐空冷至200℃,全程高純氫保護,氫氣露點低于-40℃。從表1可以看出,和真空氣淬工藝相比,氫氣保護處理可以明顯提升材料的磁性能,施加磁場后效果更加顯著。但隨熱處理溫度的升高,磁場作用下降,840℃時磁場基本不起作用。圖1比較了740℃溫度下,Fe-Co合金經氫氣保護熱處理及氫氣保護磁場熱處理后的磁化曲線和磁化率曲線。可見,材料在磁化過程中,外磁場達到200A/m時,氫氣保護磁場處理及氫氣保護處理合金的磁感應強度分別為1.6T和1.4T;外磁場達到400A/m時,二者的磁感應強度分別為1.9T和1.7T,這表明磁場熱處理使得合金在低磁場下就具有較高的磁感應強度。氫氣保護處理主要是通過氫氣在高溫下和材料的C、S等雜質元素發生化學反應,生成氣相化合物并排出爐外,從而達到凈化合金的目的,隨著溫度的提高,原子擴散速度加快,凈化作用得到提升;磁場處理主要通過干涉熱處理過程中材料組織的變化,如形核、晶化、晶粒長大過程,使之在磁場方向上形成一定的織構。這種織構的形成機理,目前認為是在組織變化過程中原子擴散受磁場影響,在磁化方向上形成了能量最低狀態,并在隨后的冷卻過程中保持下來,隨著溫度升高,原子擴散容易,磁性織構容易形成,對于磁性能的提升有益,但溫度繼續升高并接近居里溫度,原子磁矩排列趨于紊亂,磁場作用反而下降。從以上結果可以看出,高強Fe-Co軟磁合金熱處理的試驗結果符合這些原理,從應用需求角度出發,熱處理溫度的提高會降低材料強度[8],為了確保材料強度達到1000MPa,一般熱處理溫度不宜超過760℃,所以磁場處理成為優化材料磁性能的首選工藝。
2磁場熱處理
由于磁場熱處理對高強Fe-Co合金性能影響顯著,因此,對不同保溫溫度、充磁時間和磁場強度等參數進行了研究,結果見圖2。從圖2可以看出,熱處理溫度對磁性能的影響明顯,隨溫度升高磁性能上升,這和常規熱處理結果是相同的;保溫時間對磁性能的影響相對較弱,隨保溫時間的延長磁性能上升,到2.0h后則基本不變,這和常規熱處理結果基本一致;充磁磁場強度對磁性能的影響不強烈,隨磁場增加,磁性能增加,150A之后變化不大,150A時產生的有效磁場為1330A/m。
3降溫速率
由于Fe-Co軟磁合金在730℃附近存在無序-有序化轉變,導致性能惡化,所以1J21、1J22等Fe-Co合金熱處理工藝中,必須控制降溫速率,通常是在730℃以上緩冷,730℃后快冷。如前所述,高強Fe-Co軟磁合金的熱處理溫度區間一般低于760℃,處于敏感區間,降溫制度對材料性能的影響至為關鍵。為此,利用真空氣淬設備對降溫速率可控技術,研究了不同降溫速率對高強Fe-Co合金性能的影響,結果如表2所示。從表2可見,降溫速率對材料的性能具有一定的影響,但總體變化不大。從數據對比來看,降溫速率為150℃/h和600℃/h時,力學性能略低,但磁性能和其他樣品差別不明顯。前者可以認為是無序-有序轉變的結果,后者則應該和過快冷卻造成的內應力有關。為了評估Fe-Co合金添加元素對合金升、降溫過程的影響,采用DSC測量了750~1050℃的差熱曲線,如圖3所示。3種Fe-Co軟磁合金中,1J21含V元素1.2wt%左右,1J22含V元素2.0wt%左右,而高強Fe-Co合金除含V元素2.0wt%外,還添加了Nb、Cr等其他元素。從圖3可以看出,隨著添加元素含量的增加,居里點(以極值點數值定義)呈下降趨勢,但升溫和降溫過程表現不同,升溫過程居里點相差不多,為964~972℃,降溫過程居里點相差較大,為867~926℃,而且放熱/吸熱峰寬也隨著增大。這說明添加元素的增加,合金的居里轉變滯后程度增加;降溫過程的影響更加顯著,表明添加元素起到的作用主要是對磁疇的釘扎。無序-有序化過程同樣受添加元素的影響,從居里點的變化來推斷,高強Fe-Co合金的無序-有序轉變會受到更大抑制,這也是降溫速率對性能影響不大的主要原因。從以上試驗結果來看,300~600℃/h的降溫速率都適用于高強Fe-Co合金熱處理的冷卻。
4結論
在航空工業中廣泛應用合金結構鋼制造飛機、發動機的主要零件[3]。12CrNi4A、18Cr2Ni4WA等都是航空器普遍使用的合金鋼,主要做傳動軸、銷子。40CrMoA調制合金鋼,綜合機械性能好,在具有相當高的強度的同時又具有良好的韌性。廣泛用于制造高負荷、大尺度的軸零件,也可以用來做大截面、高負荷、高抗磨及良好韌性要求的重要零件,如發動機曲軸等。
2曲軸熱處理工藝
2.1曲軸工作條件活塞式發動機一般由氣缸、活塞、曲軸、連桿、氣門機構和機匣組成,曲軸的組成,如圖3所示。曲軸除了和連桿一起將活塞的直線運動轉變為旋轉運動,還將功率傳遞給螺旋槳,曲軸由軸頭、軸尾和曲柄等組成,曲柄又由曲頸和曲臂組成,軸頭前段與螺旋槳軸相連。
2.2材料選擇IO-360-L2A發動機曲軸采用高級優質合金鋼40CrNiMoA鍛件制成,它是在優質碳素結構鋼的基礎上,適當地加入一種或數種合金元素(總質量分數不超過5%)而制成的鋼種,主要成分應符合GB/T3077的規定[4],高級優質鋼的含硫、磷質量分數應小于0.025%,由于曲軸為熱加工用鋼,其銅質量分數規定應不大于0.20%,如表1所示。它屬于低合金中碳超高強度鋼。該材質經處理后具有良好的綜合機械性能,Cr、Ni等合金元素的加入使其淬透性較好并使鐵素體的強度和韌性得到提高;Mo、Cr等碳化物形成元素的加入,可阻止奧氏體晶粒長大,提高鋼的回火穩定性,在使用中能有一定的沖擊抗力和斷裂韌性,高的疲勞強度滿足曲軸對材質性能的要求。
2.3曲軸熱處理IO-360-L2A發動機使用多曲柄曲軸,由鉻鎳鉬鋼鍛件制成,曲軸是發動機受力最大的部件之一,曲軸的曲頸和曲柄表面都經過滲氮處理,增加了表面的抗磨性,曲軸上螺旋槳安裝凸緣表面未進行滲氮處理,表面僅鍍一層防腐金屬層,維護時應避免劃傷,預防曲軸腐蝕和產生裂紋。曲柄是空心的,這不僅可以減輕曲軸的質量,還可為滑油提供通道,同時也是一個收集淤泥、積碳和其它雜質的空腔,滑油流動越多,清潔效果越好。材料40CrMoA曲軸熱處理工藝是鍛造正火粗車調質精車去應力退火精加工到成品氮化拋光裝機[5],其技術參數如表2所示。
2.3.1曲軸熱處理技術要求主軸頸和連桿軸徑處要求淬硬層硬度為56~63HRC;淬硬層深度為3.5~5.5mm,淬硬層邊緣到曲軸對于V形軸不大于4~5mm,對直列軸不大于6~8mm。為了確保質量,對曲軸的熱處理實際采用中頻感應加熱淬火法[6],如圖4所示,采用曲軸軸徑輪流淬火,分別進行表面淬火,其加熱頻率1000Hz;始鍛溫度1150℃,終鍛溫度850℃。
2.3.2曲軸熱處理工藝[7]1)正火+高溫回火。正火處理的目的是為了改善曲軸的基體組織,消除鍛造過程造成的粗大組織及魏氏組織,細化晶粒,并消除鍛造應力。回火后為防止回火脆性,應油淬,回火溫度在600~640℃左右。最好是淬火出來先打一個淬火硬度,根據實際情況調整回火溫度。a.正火:加熱溫度880℃,保溫270min,出爐空冷;b.回火:加熱溫度640℃,保溫600min,出爐空冷。2)熱處理調質處理。曲軸鍛造、正火后要進行熱處理調質處理,以獲得整體的最佳綜合機械性能,并為表面氮化處理做好組織準備。曲軸調質后的金相組織應為均勻的回火索氏體+少量貝氏體組織,不允許出現大量的鐵素體組織,否則將導致氮化層的脆性加大,降低曲軸的疲勞性能。a.淬火:加熱880℃(氮氣保護)保溫時間5h;冷卻曲軸出爐后預冷1.5min(曲軸表面顏色在800℃以上一點),隨后淬入水玻璃水溶液中,冷卻6~7min出水空冷。淬火介質使用玻美度3~3.5的水玻璃水溶液。b.回火:40CrMoA軸加熱溫度560~570℃,保溫時間為5.5h,出爐空冷。3)氣體氮化處理。曲軸表面進行氮化處理,一方面是為了獲得高的疲勞強度,另一方面是為了獲得高的表面硬度,提高曲軸的耐磨性能。曲軸表面經氮化處理后,生成極細顆粒具有高硬度的ε相,同時還生成Fe3N和FeN,使軸頸和圓角均得到強化處理,改善表面耐磨性,增加表面強度,特別是增加抗疲勞強度,并提高材料的抗腐蝕性能。
3曲軸熱處理缺陷分析及其防止措施
曲軸在生產過程中要經過冶煉、鑄造、軋制(或鍛造)等工序,最后成材,由這些工藝過程控制的質量,一般稱為熱處理質量。熱處理質量直接影響產品的性能和使用安全。熱處理缺陷中最危險的是裂紋,稱為第一類熱處理缺陷。工程構件在交變應力作用下,經一定循環周次后發生的斷裂稱作疲勞斷裂,曲軸失效可以由多種原因引起,然而,沖擊疲勞失效可能是曲軸失效中最普遍的原因。當裂紋尖端的應力強度因子KI達到材料斷裂韌度KIc(或是裂紋尖端的應力集中達到材料的斷裂強度)時,裂紋就會失穩快速擴展疲勞最終斷裂是瞬時的,因此它的危害性較大,甚至會造成機毀人亡的慘劇。鋼質工件經熱處理后常見的質量缺陷有淬火顯微組織過熱、欠熱、淬火裂紋、硬度不夠、熱處理變形、表面脫碳、軟點等。
3.1淬火裂紋及防止措施淬火裂紋是鋼材的淬火或淬火后形成,由于冷卻時的高應力所造成;也有可能是在淬火油中的水所導致。具體如下:鋼質工件由于結構設計不合理,鋼材選擇不當、淬火溫度控制不正確、淬火冷卻速度不合適等;增大淬火內應力,會使已形成的淬火顯微裂紋擴展,形成淬火裂紋;由于增大了顯微裂紋的敏感度,增加了顯微裂紋的數量,從而增大淬火裂紋的形成。淬火裂紋一旦發生,絕大部分將造成零件的報廢,必須預防淬火裂紋的產生。首先曲軸原材料的橫截面酸浸低倍組織試片上,不得有目視可見的縮孔、氣泡、裂紋、夾雜、翻皮、白點、晶間裂紋等缺陷。材料選擇上做到經濟性和技術性的合理搭配,既要保證價格便宜又要保證材料有較好的加工性,熱處理性要好,易于淬火,變形小,淬裂傾向小。隨著含碳量的提高,Ms點降低,淬裂傾向增大,在滿足基本性能如硬度、強度的條件下,盡量選用含碳量低的鋼。為了防止零件在淬火急冷中開裂,應使其均勻加熱、均勻冷卻、均勻漲縮。在零件結構設計上,盡量避免截面形狀尺寸突變,同時注意圓角過渡。合理安排工藝路線,如正確安排好預備熱處理、冷加工和熱加工等工序可以有效減少熱處理淬火開裂傾向。恰當地選擇加熱介質、加熱速度、加熱溫度和保溫時間也可以有利于減少淬火開裂。
3.2氧化與脫碳及防止措施氧化是因為鋼在有氧化性氣體中加熱時,會發生氧化而在表面形成一層氧化皮,在高溫下,甚至晶界也回會發生氧化。脫碳是鋼在某些介質中加熱時,這些介質會使鋼表面的含碳量下降,脫碳的實質是鋼中碳在高溫下與氧和氫發生作用生產一氧化碳。脫碳會明顯降低鋼的淬火硬度、耐磨性及抗疲勞性能。防止氧化、脫碳的有效措施是采用鹽熔爐加熱、護氣氛爐、真空爐加熱和預留足夠的加工余量,見表3所示。
4結論
關鍵詞:生活污水;濕地處理;工藝流程
一、概述
盤錦鼎翔集團現有常住人口1.2萬人,平均日排放污水1萬m3,多年來一直采取自然排放的方法,進入雙臺子河流域,對流域水質、周邊地區及空氣環境質量造成了很大的污染。同時,現有的排水系統淤積滲漏嚴重,區外采用明渠排放,給人民生活環境造成不良影響。
建設鼎翔集團人工濕地污水處理可使境內水系的水質得到極大的改善,逐步緩解和消除對環境的污染,保護本地區的生態環境。同時與城市生態建設緊密結合,增加城市水面、綠地面積與景觀用水量,對于改善盤錦市生態環境,營造親水文化氛圍,提高盤錦市整體形象具有十分重要意義。
二、處理規模
盤錦市鼎翔集團污水處理規模為:10000m3/d,小時流量按500m3/h設計。
三、設計水質
3.1原水水質
根據盤錦市環境監測站的分析,污水水質為:COD110-138mg/l,BOD536-50mg/l,SS50-80mg/l,NH3-N18-24mg/l,TP1.5mg/l,pH8.05。
3.2出水水質
根據盤錦市總體規劃,出水水質達到遼寧省污水綜合排放標準(DB21/1627/2008)中Ⅰ級標準,COD50mg/l,BOD530mg/l,SS70mg/l,NH3-N5mg/l,TP0.5mg/l,pH6-9。
四、生活污水濕地處理技術工藝
4.1概述
污水的人工濕地處理是近年來發展起來的一種新型的污水處理技術,是一種人工建造和監督控制的與沼澤類似的地面,它的基質通常是碎石,植物生長于碎石床介質中。這種濕地系統是在一定長寬比及底面有坡度的洼地中,由填料、土壤和種植在表面具有處理性能好、成活率高、抗水性能強、生長周期長、美觀及具有經濟價值的水生植物(如蘆葦)形成一個獨特的生態系統,污水在系統中流動,通過填料、土壤、植物和微生物等的共同作用,對污水進行凈化處理,因此人工濕地在處理污水中具有高效率、低投資、低費運轉、處理效果好、維修費用低的特點。
4.2工藝流程及工藝參數簡述
管網收集到的生活污水首先經過格柵進入集水池,然后由污水提升泵將污水提升到曝氣生物濾池。經過曝氣生物濾池處理后,出水COD≤96mg/l,BOD5≤40mg/l,SS≤56mg/l,NH3-N≤19mg/l,TP≤1.2mg/l。
污水經過曝氣生物濾池處理后進入沉淀池,沉淀池出來的污水進入潛流人工蘆葦濕地處理系統。
該工程構筑潛流濕地3.3hm2,設計負荷0.3m/d的潛流濕地,采用水平潛流運行模式,底部鋪設防滲膜,床體中下層、第二層、第三層及第四層均鋪碎石,上層鋪熟土,表面種植蘆葦。潛流人工蘆葦濕地處理系統處理結果:出水COD≤50mg/l,BOD5≤30mg/l,SS≤10mg/l,NH3-N≤5mg/l,TP≤0.5mg/l。
為提高水資源利用率,將經過潛流濕地處理的污水,經過二級泵站(Q=400m3/h,H=10m,N=22kW)提升至景觀濕地-國壩南側的蘆葦濕地進行深度處理。蘆葦濕地出水直接排入人工湖,經處理后的污水排入遼河。最終出水:COD≤50mg/l,BOD5≤10mg/l,SS≤10mg/l,NH3-N≤5mg/l,TP≤0.5mg/l。
五、結束語
為使環境保護的步伐能夠與經濟發展同步,興建盤錦鼎翔集團污水處理廠,徹底消除污水對河流水域的污染,保護生態環境和人民的身體健康,同時,將處理后的污水回用于景觀濕地建設,提高了水資源的利用率,它將產生顯著的社會效益、經濟效益和環境效益。