五月激情开心网,五月天激情社区,国产a级域名,婷婷激情综合,深爱五月激情网,第四色网址

人工智能課程論文優選九篇

時間:2022-02-28 01:17:18

引言:易發表網憑借豐富的文秘實踐,為您精心挑選了九篇人工智能課程論文范例。如需獲取更多原創內容,可隨時聯系我們的客服老師。

人工智能課程論文

第1篇

>> 研究生人工智能系列課程教學改革 研究生人工智能課程教學探索 研究生“人工智能”課程教學改革探索 人工智能實驗課教學改革研究 人工智能課程全英文教學改革 創新型人工智能教學改革與實踐 《人工智能》碩士課程教學改革的研究與實踐 落實科學發展觀,深化“人工智能”課程的教學改革 面向人工智能的信息管理與信息系統專業教學改革 人工智能課程教學方法研究 人工智能的應用研究 日本巨資扶持人工智能研究 人工智能系列課程研究 高中人工智能教學初探 《人工智能》雙語教學初索 人工智能雙語教學建設 人工智能實驗教學探討 “人工智能”之父 人工智能 AI人工智能 常見問題解答 當前所在位置:l(美國人工智能協會)、caiac.ca/(加拿大人工智能協會)等,它們包括了學科前沿動態、討論交流及大量的代碼資源等。通過使用這些資源,學員可及時了解人工智能最新發展動態,進行人工智能程序設計的交流及對一些問題進行較為深入的探討。

2教學方法研究

研究生教學應更突出學生的主體地位,注重發揮其學習的主動性和自覺性,為此,課程組結合課程特點,在教學方法進行了如下探索。

2.1加強教學設計

教學設計就是對教學活動進行系統計劃的過程, 是教什么(課程內容)及怎么教(組織、方法、策略、手段及其他傳媒工具的使用等)的過程[2]。在教學過程中,每節課授課前,堅持集體備課的原則,由課程組集體討論選定授課內容,補充閱讀文獻,根據授課對象與課程內容特點,確定課堂組織方式,采用的授課方式以研討式教學為主,給合講授、實驗、自學等。

2.2抓好課堂教學環節

教學方法與教學手段是保證課堂教學效果的關鍵。本課程授課對象主要為碩士研究生,他們的接受能力較強,有一定的求知欲。由于學員人數較少,授課方式可靈活組織。教室有完備的多媒體設備,基本的軟件實驗環境,教學過程可采用靈活教學方法、多種教學手段,提高教學效率,保證授課質量。

1) 以研討式為主的教學方式。研究生教學應堅持學術研究為導向,發揮學員在學習過程中的主動性和自覺性。由于研究生學員有一定的學習基礎與自學能力,教員可以在課前給學員布置預習內容,學員通過查閱資料、分析整理進而形成自己的觀點,使在課堂教學中師生互動交流成為可能,改變傳統的教員講,學員聽的灌輸式教學方式。研討式教學也有力于培養學員積極思考、創新思維的習慣與能力。

2) 教學手段的信息化。人工智能原理教學一個突出矛盾是知識點多、內容抽象、理論性強,但學時較少,因此,必須發揮現代教學手段的作用,提高教學效率。為此,課程組對每節課都精心設計了教學課件,課堂教學中以課件為主,輔以板書,充分利用多媒體信息量大、直觀等優點,改善教學效果;引入教學聲像資料,便于學員課下學習;設計演示程序,使部分比較抽象、不易于理解的內容,如子句歸結、搜索策略更形象直觀,易于學習和掌握。

3注重培養學員學術研究能力

學術能力是指專門對某一學問進行系統的哲理或理論研究的能力,它不僅包括思辨的方面,還包括實踐及感性的敏感力等方面。研究生階段學習的一個突出特點是要求學習的主體――研究生必須具備研究的能力[3]。論文寫作是培養、鍛煉、提高研究生的學術能力的重要途徑,在教學實施過程中,要求每個專題學習結束后,都要提交一份格式符合期刊發表要求的總結報告,題目可自行選定,也可由教員指定;內容既可以是人工智能該專題某一算法的實現,也可以是對某一問題的進一步研究,或者是對該專題最新研究進展的綜述。教員重點在以下幾個方面予以指導。

1) 選題準確。要求選題不能過于宏大,應以小題目反映大問題,具有一定的可研究性為宜。

2) 研究內容。研究目標明確,方法恰當,能夠提出自己的見解,所提觀點正確。

3) 論文結構。結構清晰、完整,論述嚴謹,表達規范。

4) 占有文獻豐富。撰寫過程中要有意識培養學員查閱科技文獻的能力,要求查閱反映最新研究成果的權威文獻。

4加強實驗環節教學

人工智能教學在進行各種理論知識講授的同時,還應重視實踐教學,把抽象的知識轉化為形象、直觀的實驗,讓學員真正理解人工智能的概念、本質、研究目標,從而提高學員多角度思維的能力和邏輯推理能力,進一步了解信息技術、計算機技術發展的前沿,培養他們對人工智能研究的興趣,激發對人工智能技術未來的追求。為此,課程組借鑒國內外知名大學人工智能實驗教學經驗,編寫了《人工智能原理實驗指導書》,圍繞問題表示、經典邏輯推理、不確定推理、搜索策略及簡單專家系統實現等教學內容提供了7組實驗供學員選擇。

例如,在狀態空間搜索一節教學過程中,先完成理論部分的教學,使學員對狀態空間基本概念、問題表示及求解方法有一個準確的認識,然后進行實驗教學。由學員自主完成重排九宮問題求解的程序,初始狀態和目標狀態如圖1所示,調整的規則是,每次只能將與空格(左、上、下、右)相鄰的一個數字平移到空格中[4]。實驗過程重點指導學員掌握狀態空間進行問題求解的關鍵步驟:問題表示和搜索策略。問題表示就是要確定該問題的基本信息及程序實現的數據結構,基本信息有初始狀態集合、操作符集合、目標檢測及路徑費用函數,數據結構可采用向量、鏈表等形式;搜索策略可分為盲目式搜索和啟發式搜索,可按照先易后難的原則,先實現盲目搜索中的廣度優先及深度優先搜索,在此基礎上再定義估價函數實現啟發式搜索。而在啟發式搜索實現過程中,又可以通過定義不同的啟發函數:如某狀態格局與目標節點格局不相同的牌數、不在目標位置的牌距目標位置的距離之和等加以比較,準確理解啟發函數的意義。通過實驗,學員加深了對課堂講授的理論知識的理解,能夠熟練地將狀態空間法運用于實際問題的求解,提高了工程實踐能力。

實驗教學組織方式可根據具體的實驗內容特點,采用上機編程實驗、演示程序驗證、模擬平臺開發、分組討論等多種形式進行。

5適度開展雙語教學

研究生的英語基礎普遍較好,基本都通過了國家公共英語四級考試,部分學員通過了六級考試,加之在本科階段還開設了專業英語課程,因此,在培養研究生人工智能知識的同時,我們要提高學員閱讀原版英文資料、用英語進行簡單科技寫作及對外學術交流的能力,適度開展雙語教學,對此,我們可采取以下基本方式。

1) 專業術語全部用英語表示。

在教學過程中用英語表達人工智能原理中的專業術語和主要概念,如Knowledge Representation(知識表示)、Depth-First Search(深度優先搜索)、Breadth- First Search(廣度優先搜索)等。

2) 以英文原版教材為教學參考書。

選定機械工業出版社出版的《Artificial Intelligence Structures and Strategies for Complex Problem Solving》為參考書,該書“是人工智能課程的完美補充。它既能給讀者以歷史的觀點,又給出所有技術的實用指南[5]。”

3) 加強英文文獻的閱讀。

在課程論文撰寫時,要求閱讀一定數量的外文文獻;在討論課中,鼓勵學員使用英語進行討論。

經過課程學習,學員都能準確掌握人工智能學科專業詞匯,英文運用能力得到一定提高,能較自如地閱讀原版英文專業資料,為進一步用英文進行學術交流及學術論文寫作打下基礎。

6考試與成績評定改革

考核方式采用傳統的試卷與課程論文、實踐環節等三部分組成,全面考查學員對基礎理論知識掌握情況以及理論聯系實際的能力,其中試卷占70%,課程論文占10%,實踐環節占20%。課程論文題目不作限制,由學員在課程學習階段結合某一專題選定題目,課程論文以選題意義、研究內容、論文結構、參考文獻及撰寫規范等指標為評價依據;實驗成績采用實驗過程考查、實驗結果驗收和實驗報告評閱相結合的考核方法,綜合評定。這樣做不但考核了學員人工智能基本理論掌握情況,也反映了學員的學術研究能力和工程實踐能力。同時,考核結合實際教學進程,改變了單一課終總結性考核的弊端。

7結語

經過課程組近兩年的教學方法研究與教學實踐,研究生人工智能原理課程教學收到較好的效果,但仍存在一些問題,如在課堂討論環節,個別學員準備不充分、討論不夠深入;課程論文撰寫選題隨意,文獻綜述不夠全面、準確,論文格式不夠規范等。在今后的授課中,課程組將根據授課研究生人數較少的特點,采取明確每名學員預習重點、加強課程論文交流等方式予以改進,力求取得更好的教學效果。同時,進一步充分利用便利的校園網平臺,開展“人工智能原理”網絡課程建設,購買或自主開發網絡教學資源,引導學員利用網絡資源進行個性化自主學習,增強教學過程的信息化程度。

參考文獻:

[1] 王永慶. 人工智能原理與方法[M]. 西安:西安交通大學出版社,2002:1.

[2] 李志厚. 國外教學設計研究現狀與發展趨勢[J]. 外國教育研究,1998(1):6-10.

[3] 肖川,胡樂樂. 論研究生學術能力的培養[J]. 學位與研究生教育,2006(9):1-5.

[4] 周金海. 人工智能學習輔導與實驗指導[M]. 北京:清華大學出版社,2008:204.

[5] George F.Luger.Artificial Intelligence Structures and Strategies for Complex Problem Solving[M].北京:機械工業出版社,2009:754.

Reform on Postgradrates Artificial Intelligence Course Teaching

TAN Yuehui, QI Jianfeng, WANG Hongsheng, LI Xiongwei

(Department of Computer Engineering, Ordnance Engineering College, Shijiazhuang 050003, China)

第2篇

Abstract: In view of the characteristics of artificial intelligence curriculum, including abstract content and complex algorithm, and the actual needs of undergraduate teaching, combined with teaching practice, this paper discusses and sums up the teaching reform and innovation of undergraduate artificial intelligence curriculum from the teaching system, teaching content, teaching methods and assessment methods.

P鍵詞: 人工智能;創新;本科

Key words: artificial intelligence;innovation;undergraduate

中圖分類號:G642 文獻標識碼:A 文章編號:1006-4311(2017)22-0230-02

0 引言

人工智能是計算機科學的一個分支,是當前科學技術中正在迅速發展、新思想、新觀點、新理論、新技術不斷涌現的一個學科,其屬于一門邊緣學科,同時也是多個學科交叉而成的一門學科,包括語言學、哲學、心理學、神經生理學、系統論、信息論、控制論、計算機科學、數學等[1]。當前人工智能已經是很多高校計算機相關專業的必修課程,它是計算機科學與技術學科類各專業重要的基礎課程,其教學內容主要包括自然語言理解、計算智能技術、問題求解和搜索算法、知識表示和推理機制、專家系統和機器學習等,國內外很多大學都意識到了其重要性,紛紛對其展開了教學和研究。人工智能課程包含多個學科,具有內容抽象、理論性強、知識點多等特點,且算法復雜,但是多數高校采用的教學方式仍是傳統的課堂教學方式,即“教師講、學生聽”的教學模式,這種信息單向傳輸教學模式以教師為主體,學生只是在被動的接收知識;存在過分重視理論教學,忽視實踐活動教學的問題,導致教育內容無法和社會接軌;人工智能教材理論性過強,學生在學習過程中常常感到枯燥乏味,進而對學習該課程失去熱情[2],久而久之,不僅人工智能課程的教學質量和效果無法達到預期,甚至學生還會產生厭學心理。針對人工智能課程中現有的各項問題,本文作者結合自身豐富人工智能教學實踐經驗,參考人工智能課程特點和教學目標,從多個方面探討和總結了人工智能,包括教學內容、教材選擇、教學方法和考核形式等。

1 教學內容優化與更新

人工智能是一門嶄新的學科。開設本課程首先是確定教學內容。通常來講,人工智能學科的內容包括兩個部分,具體:一是知識表示和推理;二是人工智能的應用。前者是人工智能的重要基礎,后者主要介紹了幾種人工智能應用系統,包括自動規劃和機器視覺、機器學習、專家系統等。另外,課程內容中還包括了一些人工智能應用的實例,將實踐和理論緊密結合起來[3]。

隨著時代的發展和科技的進步,人工智能學科也取得了較大發展。基于此,人工智能學科也應該與時俱進,更新人工智能教學大綱,進一步完善其教學內容。修訂后的人工智能教學大綱將人工智能分成兩個部分,即基礎部分和擴展應用部分。前者包括計算智能、搜索原理、知識表示等,后者包括智能機器人、智能控制、多智能體、自然語言理解、自動規劃、機器學習、知識工程等。

教學內容的選擇和確定應綜合考慮多項因素,不僅要重視基礎知識,也應注意推陳出新,隨著科技的進步做到與時俱進,同時教學內容應符合現實的需求,能夠與社會接軌,將理論和實踐緊密結合起來,只有這樣人工智能課程的教學質量和效果才能事半功倍。

2 教學策略及教學方法的改革創新

由于人工智能課程具有算法復雜、內容抽象、理論性強、 知識點多的特點,傳統的教學模式已經無法滿足人工智能課程的需求,教師應探索更加有效的教學模式和方法,確保人工智能課程能夠取得良好的教學質量和教學效果。具體的改革和創新人工智能課程的手段和方法主要包括以下幾個方面:

2.1 激發學生的學習興趣 無論是經驗還是常識都在告訴我們每個人最好的老師就是興趣,學生只有對某門學科存在興趣,才會更加主動積極的學習該門課程,從而獲得良好的教學效果。比如,作者在課程的一開始先播放了一段著名導演斯蒂文?斯皮爾伯格的《Artificial Intelligence》的相關片段,由這個電影學生知道了世上存在人工智能的機器人,學生們隨著電影情節的發展而深深感動,與此同時教師讓學生思考和談論人工智能是什么?研究人工智能的意義在哪里?實踐發現,在課堂中加入電影因素,能夠大大提升學生們的注意力,讓學生更加專注在教學任務中,有效提高了學生探索人工智能的積極性和主動性。此外,在教學中還可以用動畫、視頻、圖片等手段將反映人工智能最新研究和應用的成果展示出來,讓學生更直觀的感受人工智能的奧妙,從而投入更多熱情學習人工智能課程。

2.2 面向問題的案例教學法 案例教學法是一種以案例為基礎、以能力培養為核心的一種教學方法[11]。針對學校學生特點,我們采取了以下幾種教學形式實施案例教學。①講解式案例教學:這種案例通過教師的講解,幫助學生理解抽象的理論知識點。案例的呈現有兩種基本形式:一是“案例―理論”,即先給出教學案例,然后再講解理論知識;二是“理論―案例”,即教師先講解理論知識,再給出教學案例;通過情境體驗與案例剖析激發學生認知的興趣,引導學生對將要學習的內容產生注意,有利于教師導入新課。②討論式案例教學:在課程初期將學生分成若干學習小組,每小組3~4人;教師將提前設計好的一題多解的教學案例以及收集的相關資料分配給每個小組,要求學生在課余時間通過自學和組內討論的方式給出問題的不同解決方案。③辯論式案例教學:在課程后期,采取專題辯論的方式對綜合應用案例進行討論,能有效地啟發學生全方位地思考和探索問題的解決方法,加深學生對人工智能的理解。

2.3 個性化學習與因材施教 在開展課程教育過程中應注意對學生進行個性化教學,結合學生特點因材施教。比如,在日常教學中多觀察學生情況,鼓勵那些應對教學任務后仍存在余力的W生深入探索較深層次的課程及相關知識,同時友善面對學習較差的學生,分析其學習過程中面對的困難,有的放矢地采取應對措施,幫助其不斷進步;在教學過程中讓學生以讀書報告的形式多多思考,鼓勵學生發散性思考問題,鼓勵優秀學生進行深一步的探討,并且教師應幫助具有新穎思想或論點的學生將其智慧以科技論文和發表文章的形式轉化為成果。

2.4 注重綜合能力培養 在研究型教學中任務驅動是一種常用的教學方法,其中心導向是任務,學生在完成任務的同時也在吸收和掌握知識。通常來講,該教學方法的步驟是:教師提出任務師生共同分析以得出完成任務的方法和步驟適當講解或自學、協作學習完成任務交流和總結。”[3]該教學模式不僅有利于培養學生的創新能力和創新意識,還能夠培養學生解決實際問題的能力,提高其綜合實力。不僅如此,由于該教學模式通常是以小組協作的方式進行,教師給出研究范圍,學生自愿結組并選擇具體的題目,經過分析和討論后以程序設計或者論文的形式協作完成研究。由此可知,學生是在以團隊的力量解決問題,這十分考驗學生的團隊協作能力,對于學生團隊合作精神的培養至關重要,且在完成任務的過程中學生需要查閱大量的資料,久而久之學生收集資料和創新能力勢必會得到提升。

2.5 采用啟發式教學 人工智能的很多問題都較為抽象,對學生理解力的要求較高,因此,在實際的教學過程中教師應有意識的就課程內容提出相關問題,讓學生自己獨立思考,鼓勵學生提出自己的想法和解決方案。然后回歸到課程上,對比分析教材上的解決方案和學生自己的解決方案,如此不僅培養了學生獨立思考的能力,也增加了學生參與教學活動的意識,提高了學生的學習熱情。比如,在講到較為抽象的“遺傳算法”時,先提出一個問題,即“遺傳算法如何用于優化計算?”,然后從“達爾文的生物進化論”入手,討論“遺傳”、“變異”和“選擇”作用,之后舉例分析,啟發學生思考“遺傳”、“變異”和“選擇”的實現,最后師生一起導出遺傳算法用于優化計算的基本步驟。如此既完成了教授遺傳算法的目的,也鍛煉了學生邏輯思維的能力,教學效果良好[4]。

3 作業和考核方式的改革創新

過去的課程作業都是單一書面習題作業,發展至今,課程作業形式已經發生了變化,更加豐富多樣,包括必須交給教師評閱的書面家庭作業和不必交給教師的課外思考題目、口頭布置的思考題或閱讀材料以及大型作業等。其中通過網絡就可以完成上交作業,并且教師批閱作業后也可以通過網絡返回給學生,實現了網絡化。課程的考核方式較之以前也發生了較大變化,加強了平時思維能力的考核,更加注重學生實驗能力和動手能力的培養,不再是絕對的一次考試定成績,而是在總評成績中加入30%的平時成績,如此不僅減輕了學生的期末負擔,也迫使學生更加重視平時的學習思考,有利于課程教學質量的提升。

4 結束語

本文是以提高教學質量為目標,結合教學實踐,從教學體系、教學內容、教學方法、考核方式等方面對本科人工智能課程的教學改革進行了探討,總結了該課程在教學和實踐方面的一些教改舉措。這些舉措符合二十一世紀高校教學的要求,可以支持教師提高教學手段現代化的水平,同時更貼合學生的學習需求。作為該課程的授課教師應始終保持對教學內容的不斷更新、教學方法的多樣化,才能激發學生的學習興趣,培養他們的思維創新和技術創新的能力,最終提高本課程的教學質量。從學生的反饋來看,作者所總結的教學實踐具有明顯的教學效果。但仍有許多方面做得不夠,今后將繼續在教學過程中不斷總結成功的經驗,吸取失敗的教訓。

參考文獻:

[1]蔡自興.人工智能及其應用[M].三版.北京:清華大學出版社,2007.

[2]謝榕,李霞.人工智能課程教學案例庫建設及案例教學實踐[J].計算機教育,2014(19):92-97.

[3]蔡自興,肖曉明,蒙祖強.樹立精品意識搞好人工智能課程建設[J].中國大學教學,2004(1):28-29.

第3篇

關鍵詞:航天類專業 人工智能 教學探索

中圖分類號:G64 文獻標識碼:A 文章編號:1674-098X(2014)10(b)-0155-02

面對航天科技迅猛發展,現代軍備技術快速提升,培養具有專業性的高素質航天類人才,是我國航天科技發展的戰略選擇,也是航天重點高校面向并有效服務航天事業的歷史責任。航天類本科生的教育形式也需要突破傳統的方式,著重多樣性、前沿性、工程性,因此,該專業的各門課程教育都應該結合專業特點,探索新的教學模式。

人工智能自1956年誕生50多年以來,引起眾多科研機構、政府和企業的空前關注,已成為一門具有日臻完善的理論基礎、日益廣泛的應用領域和廣泛交叉的前沿學科。由于航天領域的特殊要求,人工智能在其發展中發揮著不可替代的重要作用,各發達國家都相繼開展了人工智能與航天技術相結合的研究,致力于實現可重構的、具有容錯能力的、智能的飛行系統和管理系統。因此,“人工智能”作為航天類專業的一門特色選修課,應結合專業特點展開更具有實用性和創新性的教學。

1 人工智能課程特點

一方面,“人工智能”是一門多學科交叉的綜合學科,它涉及計算機科學、數學、心理學、認知科學等眾多領域,具有知識點多、涉及面廣、內容抽象、不易理解、理論性強等特點,使得該課程的教學具有較大的靈活度和較高的難度。另一方面,“人工智能”是一門正在發展中的學科,具有較強的前沿性,計算機科學、信息科學、生物科學等相關學科的發展不斷的提出了許多新的研究目標和研究課題,使得人工智能的技術和算法也需要不斷更新,這在很大程度上增加了“人工智能”課程的教學難度。

2 航天類專業特點

首先,航天類專業具有較強的工程性。在專業的教學改革中有統一的特點,即強調要體現航天工程技術的綜合性、系統性, 注重培養復合型人才。其次,航天類專業具有一定的前沿性。因為航天飛行器作為現代高科技和多種學科技術綜合應用的結晶,應及時把現代先進科技融入到了專業基礎和專業類的課程教學中, 專業知識更新快成為又一特點;另外,航天類專業應注重實踐性教育。尊重個性和興趣,強調動手能力,實驗室對學生開放,要求學生自主地設計完成實驗,強調對學生設計理念和創造能力的培養。最后,航天類專業應重視產學合作。產學合作的目的在于推動學校與航天產業的持續全面合作,造就一支科學技術研究和工程實踐兼備的教師隊伍。

3 教學模式的探索

3.1 教材的選擇

人工智能作為一門新興的學科,其理論與方法都還在不斷的發展與完善中。就目前來看,關于人工智能的定義和范圍都沒有一個統一的標準,不同的教材所介紹的內容也不盡相同。在教材選用方面,需要綜合考慮專業特點和學生的知識背景。本課程主要針對航天類專業高年級本科生,該類學生具有一定的數學、計算機、信息論、通信理論等基礎知識,對航天應用的基本需求有初步的了解,因此,“人工智能”課程難度應該控制在中級,可以較深入的介紹人工智能的基礎算法和應用案例。

中南大學蔡自興教授積累了多年的教學與科研經驗,借鑒了國內外其他專家和作者的最新研究成果,吸取了國內和國外人工智能領域學術書籍的長處,于1987年編寫了“人工智能及其應用”一書,該書根據人工智能學科的新發展不斷修訂,推出四個版本。本課程采用“人工智能及其應用(第4版)”,其中大部分內容適合本科生學習。另外,本課程還給學生提供其他一些參考書目,如N.J.Nilsson 的“Artificial Intelligence:A New Synthesis.Morgan Kanfmann”等經典教材。

3.2 課堂教學形式的探索

“人工智能”課程內容較抽象,概念較為繁多,若采用單一的課堂講授的方式,學生容易概念混淆、理解不透,逐漸產生厭倦情緒,導致教學效果差。本文探索不同的課堂教學手段,根據不同內容采用不同的教學手段,有利于學生對課程內容的理解與吸收。另外,考慮到航天類的專業特點,突出課程內容的工程應用,增加研究性質的教學內容與形式,有利于培養學生的創新能力和實踐能力。

(1)課件采用圖文并茂的PPT。綜合利用文字、圖像、聲音、視頻等多種媒體表示方法,在介紹原理和概念時采用精辟的文字,介紹算法流程時采用圖像,介紹算法應用時采用視頻。在PPT中適當利用不同的字體、顏色或動畫來突出重點,細化流程,引導學生的思路,便于集中注意力接受重點內容。

(2)適當增加課堂討論與練習。對于人工智能的一些基本問題,可以引導學生進行調研和討論,來深化課程內容的了解,并提高學生的學習興趣;對于重要的算法和理論,可以增加課堂練習,讓學生實際動手進行公式的推導或演算,并在練習中分析學生對問題的理解程度,有針對性的增加講解或指導。

(3)適當采用類比的講解方式。對人工智能的不同學派,不同方方法,以及方法的不同應用,廣泛的采用類比的形式進行講解,不僅可以復習已學習的內容,也利于對新內容的理解。并且,通過對不同內容的比較總結相似點、區分不同點,可以避免概念的混淆,清晰的掌握課程內容。

(4)增加研究性教學。研究性教學強調通過問題來進行學習,有必要將實際應用案例或者授課教師的科研項目融入日常的教學工作中去,用“啟發式”、“案例式”教學激發學生“自主學習”能力。

3.3 課程內容的探索

一方面,鑒于本科生知識結構還不夠完善,“人工智能”課程的內容要控制在適應本科生學科基礎的中等難度;另一方面,鑒于航天類專業的特點,課程內容應更注重與航天應用相結合的內容,并且在課程中增加具體應用的介紹。具體的課程內容如表1所示。

3.4 考核形式的改革

“人工智能”課程注重學生創新能力和實踐能力的培養,傳統的試卷形式不能全面的反應學生的學習效果,因此,應采用課堂表現和課程報告相結合的方式進行綜合考核。

一方面,重視學生提出問題、分析問題和解決問題的能力,對學生課堂討論與練習的表現進行考核評分,作為總成績的參考;另一方面,注重學生課題調研和實踐的能力,采取提交課程論文的形式進行考核。正確引導學生根據個人興趣、課程內容、可行性、實踐難度進行合理選題,并根據所選題目進行文獻查閱和總結,完成調研報告或算法實現報告。結合者兩個方面進行最終成績的評定,綜合衡量學生問題分析能力、論文寫作能力和創新實踐能力。

4 結語

航天類專業的本科生教學需針對專業特點有的放矢,該專業的課程教育都應該趨向于前沿性、專業性和實用性。本文的“人工智能”課程教學改革方案不僅考慮到該課程屬于前沿叉學科的特點,也綜合考慮了航天類專業的特點。為了使課程教學更好地服務于學生,本文提出的改革方案打破傳統的教學模式,將課堂理論講解、課堂討論、課后調研、項目實踐等相結合,充分調動學生的學習興趣和積極性,提高學生的創新能力,有利于培養真正符合航天領域所需要的綜合型高級人才。

參考文獻

[1] 王甲海,印鑒,凌應標.創新型人工智能教學改革與實踐[J].計算機教育,2010(15):136-138,148.

[2] 劉興林.大學本科人工智能教學改革與實踐[J].福建電腦,2010(8):198-199.

[3] 懷麗波.32課時《人工智能基礎》課程教學的幾點思考[J].華章,2013(34):193-194.

[4] 紀霞,李龍澍.本科人工智能教學研究[J].科教文匯(上旬刊),2013(6):91-92.

[5] 肖春景,李建伏,楊慧.《人工智能》課程教學方法改革的探索與實踐[J].現代計算機(專業版),2013(26):32-34.

[6] 熊德蘭,李梅蓮,鄢靖豐.人工智能中實踐教學的探討[J].宿州學院學報,2008(1):146-148.

[7] 張偉峰.本科高年級人工智能教學的幾點思考[J].計算機教育,2009(11):139-141.

第4篇

關鍵詞:人工智能;教學改革;教學方法

引言

人工智能(ArtificialIntelligence)是一門研究和模擬人類智能的跨領域學科,是模擬、延伸和擴展人的智能的一門新技術。由于信息環境巨變與社會新需求的爆發,人工智能技術的日趨成熟。隨著AI3.0時代的到來,大數據、云計算等新技術的應用也愈發廣泛,對于管理類人才來說,加強對人工智能知識的深入學習,不斷將人工智能技術與管理知識結合起來,對其未來職業生涯的發展有著重要作用。人工智能是一門前沿學科,管理學院開設人工智能課程的目的是為了更好地培養學生的技術創新思維與能力,基于其覆蓋面廣、包容性強、應用需求空間巨大的學科特點,通過概率統計、數據結構、計算機編程語言、數據庫原理等基礎課程的學習,加強學生解決實際問題的能力,為就業打下基礎。本文基于社會對于人工智能領域的人才需求,結合諸多長期從事經管類專業課程教學的老師意見,針對管理類人才的人工智能課程教學內容與方法進行探討,以期對中國高校人工智能課程教學改革研究提供幫助與借鑒。

1、教學現狀與問題

作為一門綜合性、實踐性和應用性很強的理論技術學科,人工智能課程內容及內涵及其豐富,外延極其廣泛。學習這門課程,需要較好的數學基礎和較強的邏輯思維能力。針對管理類人才,該課程在課程教學過程中存在幾個較為突出的問題。(1)課堂教學氛圍枯燥目前,中國大多數大學仍采用傳統的課堂教學模式,在教學過程中照本宣科,忽略與學生的互動,并且缺乏能夠有效引起學生學習興趣與加深知識理解的教學環節設置,如此一來大大降低了學生自主思考的能力。在進行人工智能相關課程知識講解時,隨著章節的知識難度不斷增加,單向介紹式的枯燥教學方式無法反映人工智能學科的全貌,課堂講解難以同時給以學生感性和理性的認知,部分學生因乏味的課堂氛圍漸漸無法跟上教學進度,導致學習動力不足。(2)基礎課程掌握不牢管理類專業的學生大部分都會走向更加具體化的管理崗位,具有多學科的素養,但這也導致很多學生所學知識雜而不精。學生在基礎不夯實的情況下去學習更高層面的知識,給學生學習與老師教學都造成了很大困擾。人工智能課程知識點較多,涵蓋模式識別、機器學習、數據挖掘等眾多內容,概念抽象,不易學習。一些管理類專業的學生未能熟練掌握高等數學、運籌學、數據結構、數據庫技術等先修課程,缺乏一定的關聯思考和研究意識,導致課程學習難度增加,產生學時不足和教學內容難點過多的問題。(3)教學與實際應用脫節當下,人工智能廣泛應用于機器視覺、智能制造等各個領域,給學生提供了大量的現實案例,使得人工智能不再是高深莫測的理論,而是現實中可以觸及的內容。例如,在機械學科領域,人工智能技術是電氣工程、機械設計制造、車輛工程等方向的重要技術來源;在醫療領域,是醫療器械的創新生產源動力;在能動領域,是高端能源裝備與新能源發展的重要驅動;在光電信息與計算機工程領域,技術的發展時刻推動著智能科學與技術核心價值的提升。然而,對于管理類專業的學生來說,現階段的人工智能教材涵蓋許多智能算法及相關理論,在教學過程中常常涉及到很多從未接觸過的抽象理論和復雜算法,書本中的應用實例大多紙上談兵,缺乏專門適用于管理類專業知識與人工智能技術相結合的教學實踐,加上一些教師授課方法單一,不利于引導學生將人工智能算法應用于現實生活。另外,大學生對知識的理解能力差異很大,教師采用統一的方式教給他們,這使一些學生無法跟上和理解,教師也無法控制學生的學習狀況,導致學生缺乏動力。因此,如何結合學生的現實情況,提高他們的動手能力和實踐經驗也是人工智能課程教學要考慮的問題。

2、管理類人才的人工智能課程教學改進策略

課程教學改革是一項提高大學教學效果和人才培養質量的重要手段。如何在時代背景下應用新技術和新思想進行實施課程教學改革是高校亟待解決的問題。對于高校的教學工作而言,教學目標、教學內容和教學方式的變化不再是課程資源的簡單數字化和信息化,而是充分利用時代信息資源優勢的新型教學模式。針對管理類專業人工智能課程教學過程中存在的問題,可以從教學方法改進和教學內容設置兩個方面進行課程教學改進。

2.1教學方法改進

教師對學生具有引領作用,其教學方法的改進能夠帶動學生改進自身學習方法。(1)啟發式案例教學案例教學法就是教師根據教學目標、教學內容以及教學要求,通過安排一些具體的教學案例,引導學生積極參與案例思考、分析、討論和表達等多項活動,是一種培養學生認知問題、分析和解決問題等綜合能力的行之有效的教學方法。啟發式案例教學以自主、合作、探究為主要特征,調動學生的學習積極性,并緊密結合人工智能領域的相關理論與方法,有效理解知識要點及其關聯性,適用于管理類專業學生的教學。具體而言,高校基于其問題啟發性、教學互動性以及實踐有用性等特點,可以建立基于人工智能知識體系的教學案例庫,雖然這項建設將極具挑戰性與耗時性,但具有很強的積極效果:培養學生較強的批判性思維能力,更多地保留課程材料,更積極地參與課堂活動,對提高教學質量、培養具有人工智能背景的管理類人才具有重要意義。例如,通過單一案例教學,讓學生掌握相關基礎知識原理及應用;通過一題多解的案例使學生思考如何獲取最有效的解題方法;通過綜合案例的設計,啟發學生全方位地探索問題的解決方案。(2)研討互動式教學研討互動式的各個教學環節是逐漸遞進、有機結合的。研討是基于學生個體的差異性,在課堂討論的過程中對學生做出評判,從而對不同類型的學生開展針對性的教學。互動則是在研討的基礎上,通過老師與學生、學生與學生的互動,讓學生主動參與到課堂教學的過程中來。在人工智能課程教學過程中,教師通過課堂討論了解學生對于知識點的掌握情況,可以有針對性地設計教學內容,例如,對于學校積極性不強的學生,將人工智能理論內容與學生個人興趣范疇、社會產業發展及研究現狀聯系起來,能夠極大程度地提高學生學習的自主能力;對于基礎知識較為薄弱的學生,可以在教師的指導下查閱相關文獻資料,根據自己的理解撰寫心得報告,并在課堂或課外進行師生互動。像這樣研討與互動相結合的模式。有助于增強學生的探索和求知欲望,建立起濃厚的學習氛圍。(3)有效激勵式教學人工智能是引領未來的戰略性技術,人才需求量極大,對教師的教學水平也提出了更高要求,因此,進行有效激勵極為重要。在學生激勵方面,可以舉辦各類人工智能競賽項目,設置相應項目獎學金,吸引學生參與實踐,調動學生做研究、發論文的積極性。例如,教育部主辦的中國研究生人工智能創新大賽,圍繞新一代人工智能創新主題,激發學生的創新意識,提高學生的創新實踐能力,為人工智能領域健康發展提供人才支撐。高校也可以借鑒這種模式,在各學院乃至全校開展此類競賽項目,激發學生的創新能力與團隊合作能力,鼓舞更多學生加入到人工智能課程的學習中來,激發其學習興趣。在教師激勵方面,在教師聘任和提升過程中把參加學生課程制定、課堂與課外作業、課程項目和論文指導等看作教學任務的一部分,鼓勵教師積極參與這些活動。(4)學科滲透式教學人工智能學科知識融合程度較高,學科交叉性強。基于人工智能的學科交叉性特點,增強管理類人才對學科應用的領悟,可以采取開展學科滲透式教學的方法。從2015年起,國務院和教育部先后印發了《國務院關于積極推進“互聯網+”行動的指導意見教育》、《高等學校人工智能創新行動計劃》等文件,“互聯網+”、“智能+”已經滲透到各個領域,人類進入數字經濟時代,社會需求“技術+管理”的高端復合人才。例如,基于工業4.0和強國戰略,人工智能技術在智能制造的應用極為廣泛。上海理工大學非常重視少數民族預科班的教育質量。為增強少數民族管理類人才對該領域應用的認識,我們請機械工程、能源動力領域的相關專家以授課或講座的形式,進行相關領域知識和發展趨勢的講解,使學生理解更為透徹。此外,在教學實踐過程中,還可以用舉辦人工智能知識交流會、線上人工智能論壇等形式,促進不同專業間老師、學生對于人工智能知識模塊的見解,相互交流、滲透和學習,從而推動人工智能課程教學的改進。

2.2教學內容設置

世界一流大學在人工智能課程內容設置根據不同國家的教育體系設置,肯定會有不同,但頗有共通之處。本文借鑒世界頂尖大學經驗,針對管理類專業人工智能課程教學內容進行研究,結合中國教育體系設置,認為應從以下幾方面進行改進。(1)核心內容設置為避免學生因為知識點過多而出現雜而不精的問題,勢必要精化教學內容。在互聯網時代,我們可以使用云計算和其他方式來實現數據信息的傳輸、存儲和處理,通過在線收集和整合網絡課程相關數據,挖掘和豐富教學資源,并在整合課程資源的基礎上,進行研究方法和前沿知識的擴展。在核心內容設置方面,可以通過收集到的數據資料,選擇人工智能領域具有代表性且難易程度適中的知識作為重點,使學生能夠在有限的學時內掌握人工智能的知識脈絡。例如,編寫針對管理類人才的人工智能教材,內容涉及緒論、知識表示與推理、常用算法、機器學習、神經網絡等方面的同時,重點增加相應知識點在管理上的應用案例,加強學生對知識點的理解。同時,根據管理類專業偏向領域,開設關聯程度較大、應用較廣泛的人工智能選修課程,以便學生根據自己的興趣與需求選修具體方向的課程。(2)注重學生的數理及編程基礎良好的數理及編程基礎是學習人工智能的前提。只有具備了這些基礎,才能搞清楚人工智能模型的數量關系、空間形式和優化過程等,才能將數學語言轉化為程序語言,并應用于實驗。管理學院人才的數理及編程基礎相對薄弱,因此,在安排學生學習人工智能課程之前,建議開設面向全體管理類專業學生的微積分、線性代數、概率論等專業基礎數學課程以及C語言、python等編程基礎課程,使學生具備數學分析的基礎與一定編程基礎,為學習人工智能課程打下堅實的基礎。另外,可以推進MOOC平臺建設,在平臺上開設人工智能網絡課程,幫助學生掌握人工智能知識基礎及專業技能。(3)實驗建設為了加強學生對于人工智能知識點間的關聯性理解,可以基于不同的應用模塊,設計具有前后鋪墊、上下關聯的綜合性實驗,設計不同層次的項目要求,同時基于相同的實驗課題,讓學生分組對實驗課題進行攻克,并設置多元化的實驗評價體系,通過實驗教學過程中反映出的不同進度,讓教師能對學生的學習水平做出準確評判,及時進行教學反思,以便更好地開展下一步工作。例如,針對人工智能課程應用中很廣的遺傳算法,在某一管理規劃的具體應用上設置理解-實現-參數分析-具體應用-嘗試改進-深度拓展的不同層次的項目要求,在這些項目層次中規定必做項與可選項,讓學生基于同一實驗課題進行合作學習,然后通過個人自我評價、小組成員互相評價以及教師評價的方式進行打分,對小組整體能力以及個人能力進行綜合評估,以期培養學生的自主思考能力。

第5篇

 

一、網站的構建 

 

1.網站框架設計 

我國高中階段人工智能教育還處于起步階段,據調查,全國已開設人工智能課程的中學不超過十所。事實上,對于人工智能這一前沿學科,大部分信息技術教師還缺乏足夠的了解,因此對于該課程的開設也一直處于觀望狀態。考慮到人工智能教育的實際情況以及網站的主要對象,我們以高中信息技術選修課教材《人工智能初步》為基礎,按教學內容設置和劃分欄目,同時又圍繞“學人工智能、教人工智能、用人工智能、機器人專題”四大專題進行內容重組。當然,網站的基本架構并非一成不變,它需要在實際應用中進行檢驗與修正,最終實現網站的完美架構。依據上述思路建構的網站基本框架如圖1所示。 

2.網站的欄目設計 

 

新聞欄目以圖文的形式人工智能發展的最新情況,這是激發并維持廣大師生關注人工智能的基礎,也是師生獲取最新信息的窗口。子欄目“中國動態”“歐美動態”等分別介紹了各地區最新的人工智能信息,尤其是機器人產品的新聞。子欄目“會議論壇”,“比賽通知”為師生、參與比賽提供服務。 

論文欄目是作為資源型網站的基礎。子欄目“教學研究”主要面向從事人工智能教育的研究者和教師,探討教學方法、分析教學案例、推薦教材和參考書,為更好的開展人工智能教學提供理論依據。子欄目“學習樂園”主要面向學生,展示活動實錄、闡述學習感受,聆聽專家意見,為更好的學習人工智能提供事實參考,教師也通過“學習樂園”來了解學生的所思所感所想。子欄目“賽事規則”介紹了各個地區和各級機器人比賽的一些規則,有利于師生更好的進行人工智能的教與學。 

資源、視頻、圖庫、酷站:這四個欄目是資源型網站的核心。尤其是資源模塊中的子欄目“電子書刊”“教學課件”“人工智能軟件”分別以不同的文件格式向師生提供教與學的資源,使其能快速準確地獲取符合需求的資源,免去了在因特網上盲目搜索出現大量冗余信息的麻煩。網站整合了文本、視頻、圖片等多媒體信息,以豐富多彩的形式呈現資源,增強了網站的吸引力和信息的可閱讀性。 

愛問欄目是作為學習型網站的基礎,也是本網站的一大特色。“愛問”是采用了模仿“百度知道系統”的程序設計,更注重知識的答疑解惑。我們將此欄目劃分為“學人工智能”“教人工智能”“用人工智能”“機器人問題”四個子欄目,師生可根據各自的需要進行提問、回答問題、搜索問題等操作。同時,設立了積分制,激發師生提問和回答問題的熱情。 

用戶中心欄目是學習型網站的核心。作為一個專題網站,必然要十分強調學習的功能。子欄目“網絡書簽”的功能可以使學習者記錄自己所瀏覽過的或所感興趣的網頁,便于在下次登陸后繼續學習。在子欄目“信息”功能中,學習者可以新聞、論文、資源、愛問等信息,待管理員審核通過后即可在網站中顯示出來。另外,教師也可在教學過程中通過此模塊要求學生提交作業,便于教師隨時隨地的批改作業。 

 

二、網站的訪問數據分析 

 

人工智能教育專題網站從開設至今將近8個月的時間,已經有超過1萬的獨立訪客訪問了本站,我們選取了最近訪問的2000位獨立訪客進行研究。通過對地域、被檢索方式、受訪頁面及回頭率的分析,可為網站下一步的改進與完善提供依據,為其他人工智能教育類網站的建設,在網站的用戶類型,網站的內容選擇與更新,網站的推介宣傳等方面提供參考與借鑒。 

 

1.地域分析 

在統計到的訪問該網站的地域中,國外共有12個國家訪問了本網站。國內除西藏、澳門之外,其他省份、直轄市、特別行政區都有訪問過本網站,這為我們今后在高中普及人工智能教育提供了有力的依據。但是,通過圖2的數據我們也可看到,各個地區間的訪問量差距較大,并且訪問量靠前的幾個省份基本上是沿海地區,而中部和西部地區的訪問量比較少,所以在今后的工作中不僅要加強網站本身的建設和宣傳,更要把人工智能教育的理念推廣到中部和西部地區,使那里的中小學師生也接觸人工智能的知識,激發他們對信息技術美好前景的向往。 

2.被檢索方式分析 

搜索引擎是網絡上最常用的獲取資源的方式。掌握用戶使用搜索引擎的情況,有助于了解網站的被檢索方式。統計搜索關鍵字的次數,有助于了解網站被檢索訪問的原因。在專題網站建設完成后,向“百度”、“Google”等大型搜索引擎系統提交收錄網頁申請是極其必要的,它有利于提高網站的知名度和訪問量。而在網站中增加“人工智能”,“prolog 源程序”等文字內容,將會有利于用戶在盲目搜索時能訪問到該專題網站。 

3.受訪頁面分析 

受訪頁面是指用戶訪問該專題網站時所停留的頁面。通過對受訪頁面的統計,使我們能夠掌握用戶相對較為關注網站的哪些內容。表1數據中“學人工智能”占23.82%,“資源下載”占了16.32%,表明用戶對人工智能的知識還不是很了解,對人工智能的認識還停留在“學”的層面,遠未達到“教”的程度。人工智能教育類網站在建設中,如果能提供大量的人工智能的基礎知識以及豐富的可下載資源,將會顯著提高網站的受歡迎度以及用戶的認可度。 

4.回頭率分析 

在網站訪問統計中,通常將距離上次訪問超過12小時的再次訪問記錄為一次回頭。通過對回頭率的統計(表略)看出該專題網站的粘性不是很高,尤其是3次回訪以上的用戶還不多。通過對部分用戶訪談后了解到,網站的更新速度慢,資源較少,內容偏難是其不愿進行多次回訪的主要原因。所以,人工智能教育類網站在維護期間要注意內容的時效性、豐富性、通俗性才能保證網站訪問的可持續性。 

 

 

三、網站建設的若干思考 

 

目前國內外有關人工智能的專題網站不多,針對人工智能教育的網站更少。在可供借鑒的成熟案例較少、研究又處于剛起步階段的情況下,有必要對我們的工作進行反思總結。通過上述訪問數據的分析,以及在人工智能教育專題網站建設的準備階段,實施階段及運行階段的實踐,我們認為在建設人工智能教育類網站時應當注意以下幾個問題。 

1. 充分關注用戶信息 

訪問量是綜合類或門戶類網站的生命線,應當盡可能地拓寬訪問者的類型與層次。但人工智能作為一門新興學科,其專題網站的學科性特點甚至比普通的專題學習網站還要突出,因此單從訪問量上來說,它是無法和門戶類網站相比的。所以在建設的初期首先就要考慮的網站的對象問題,也就是要關注哪類人訪問了網站。只有準確的掌握了用戶的信息才能更好提供用戶需要的資源。 

在這里,人工智能教育專題網站是通過以下三種手段來獲取用戶信息的。 

第一,用戶必須注冊才能訪問網站,注冊的內容包括年齡、身份、學歷,電子郵件等內容。 

第二,在網站中設立“網站調查”欄目,可以對“你是如何知道本站的”,“你覺得本站建設的如何”等內容教學在線調查。 

第三,通過“中國站長站”等專業的數據收集程序來獲取用戶基本信息,可收集到用戶地域、受訪問頁面、用戶回頭率等信息。只有掌握了準確的用戶信息,才能更好的為用戶提供服務。 

2.與用戶攜手共建網上資源 

人工智能的子學科門類眾多,僅高中教材《人工智能初步》中就有知識及其表達、推理與專家系統、人工智能語言與問題求解等多個主題。而且我國的人工智能研究相對薄弱,很多資料都是外文的。任何一個人要很熟練的掌握人工智能的各個內容是很困難也是不現實的。我們通過一年多的實踐也體會到,僅僅依靠課題組成員很難保證網站資源庫內容的全面性和針對性。所以在網站最新一次改版中,我們增加了用戶的信息功能,使得用戶自己可以新聞、添加文章,上傳資源,只要經過管理員審核即可在網站中顯示。 

另外,在人工智能教學過程中,我們也充分利用學生的優勢,要求學生以作業的形式提交文本和視頻資源,并將作業的數量和質量作為考察學生學習效果的一個指標。這些舉措保證了網站內容更新的時效性和內容的針對性。用戶所的就是用戶所關注的,用戶所關注的就是網站所要收集的。 

3.通過多種形式充分發揮網站作用 

目前,全國高中開設了“人工智能初步”選修課的學校極少,教師手頭上可供選擇的教材也只有5套。從專題網站上統計的數據來看,雖然網站目前的用戶主要是教師,但“學人工智能”頁面訪問量卻遠多于“教人工智能”。從這些情況看,單靠幾個人工智能教育類的專題網站無法從根本上解決高中人工智能教育現階段所面臨的窘境。所以,在條件允許的情況下,可以通過研修班、會議論壇等形式組織教師進行面對面的交流。 

例如,我們就在2007年5月25日至27日在浙江師范大學舉辦了全國首屆“高中人工智能課程研修班”,來自全國十個省市的70余位信息技術教師及教研員參加了研修班的學習。在研修活動中,教師不僅學習了人工智能的知識,也對人工智能教育的現狀及發展過程中遇到的問題做了充分了探討和交流。本次研修活動結束后,人工智能教育專題網站則成了學員們交換信息、交流體會、共享資源的有效平臺。 

 

四、結束語 

 

總之,借助專題網站的平臺作用開展各種活動,不僅彌補了人工智能教育網站缺乏面對面交流和互動的缺點,也為把網站資源建設的更具針對性提供了有效幫助。 

 

參考文獻: 

[1]張劍平. 關于人工智能教育的思考[J] .電化教育研究.2003,(1). 

[2]曹瑞敏. “中國海”學生專題學習網站應用[J] .中國電化教育.2005,(5). 

第6篇

關鍵詞:人工智能;教育;新模式;改革;構想

教育是著眼于未來的事業,教育的首要任務就是為未來社會培養相適應的合格人才。隨著人工智能的誕生和發展,我國已經開始將人工智能應用于教育領域,并顯示出人工智能對于彌補當前教育存在的種種缺陷和不足,推動教學現代化和教育發展改革進程起著越來越重要的作用。在現代醫學發展中,工程科學與臨床醫學不斷融合,相互進步。近幾年,隨著人工智能技術,機器人技術,虛擬與增強現實技術,3D打印技術與醫學不斷的融合發展,衍生出一系列的醫學診療技術,儀器,大大推進了醫學發展。從2013年到2017年,國務院、發改委、FAD連續發文,多次提及醫療走智能化、云化的趨勢,為推動智能醫療領域保駕護航。智能與醫學的結合已經是大勢所趨,因此,為培養大量智能醫學人才極有必要對智能醫學教育新模式進行深入研究。

一、目前醫學教育以及醫學人才培養狀況

智能醫學工程是一門將人工智能、傳感技術等高科技手段綜合運用于醫學領域的新興交叉學科,研究內容包括智能藥物研發、醫療機器人、智能診療、智能影像識別、智能健康數據管理等。

智能醫學工程的畢業生掌握了基礎醫學、臨床醫學的基礎理論,對智慧醫院、區域醫療中心、家庭自助健康監護三級網絡中的醫學現象、醫學問題和醫療模式有較深入的理解,能熟練地將電子技術、計算機技術、網絡技術、人工智能技術,應用于醫療信息大數據的智能采集、智能分析、智能診療、臨床實踐等各個環節。實驗教學正是融合型創新人才的最好培養方式。智能醫學人才的培養需要各學科間的相互交融更為緊密,學生的創新應用能力才能得到更好的培養。與此同時,由于絕大部分醫工結合的專業大部分歸屬與工科學院下,缺乏必要的臨床經驗,因而學生不能很好的把握新技術的應用。

而國內相關人才缺口還非常大,目前,國內僅僅有生物醫學工程、醫學信息工程等工科專業培養醫工結合人才。但是囿于培養時間與培養模式,他們往往只能針對具體某一方向,并且目前的培養體系還多著重于工學技術的研究,缺乏臨床實踐。

二、智能+醫學教育的必要性探究

2.1技術進步對醫療人員的診療幫助

以癌癥的治療為例,由于針對癌癥藥物的研究何藥物數量非常巨大,對于普通醫生在短時間內難以進行準確的判斷針對癌癥的研究和藥物數量非常巨大,具體來說,目前已有800多種藥物和疫苗用于治療癌癥。但是,這對于醫生來說卻有負面的影響,因為有太多種選擇可供選擇,使得為病人選擇合適的抗癌藥物變的更加困難。同樣,精確醫學的進步也是非常困難的,因為基因規模的知識和推理成為決定癌癥和其他復雜疾病的最終瓶頸。今天,許多受過專業訓練的醫學研究員需要數小時的時間來檢查一個病人的基因組數據并作出治療決定。

上述問題在擁有工學、醫學雙背景的醫生手中已經不是問題,通過目前日漸成熟的AI技術,對于大量的醫療數據進行檢索,通過可靠的編程手段,通過人工智能技術,建立完備的醫療數據庫,幫助醫生進行診療。據調查,美國微軟公司已經研制出幫助醫生治療癌癥的人工智能機器,其原理是對于所有關于癌癥的論文進行檢索,并提出對于病人治療最有效的參考方案,它可以通過機器學習來幫助醫生找到最有效,最個性化的癌癥治療方案,同時提供可視化的研究數據。

2.2智能醫學對于新時代醫生培養的影響

人工智能通過計算機可為學生提供圖文并茂的豐富信息和數據,一方面加強了學生的感性認識,加強了對所學知識的理解和掌握,從而提高了教學質量。同時,人工智能可幫助教師完成繁雜的、需適應各種教學的教學課程、課件等設計,使教師將更多的精力專注于學與教的行為和過程,從而提高教學效率。正如前面所述例子,智能網絡模塊化學習平臺可使教學擺脫以往對于示教病例的依賴,拓展了學生們的學習空間和時間,可極大地提高醫學學習效率和教學質量。

教育與人工智能相結合將會創新教育方式和理念。北京師范大學何克抗教授在《當代教育技術的研究內容與發展趨勢》中提到當代教育技術的五大發展趨勢之一就是“愈來愈重視人工智能在教育中應用的研究”。結合上述人工結合上述人工智能在醫學教育中的創新作用,下面就人工智能結合醫學學教育新模式提出一些構想。

三、交叉醫學人才的培養

3.1建立智能醫學人才培養體系的必要性

目前智能醫學的研發和臨床還存在隔閡,臨床醫生并沒有很好地理解人工智能,無法從實踐出發提出人工智能能夠解決的方向,而人工智能的產業界熱情高漲,卻未必能踩準點,所以產業界需要和臨床深度溝通融合,才能真正解決看病難、看病貴的問題,緩解醫療資源緊張。目前,國內僅僅有生物醫學工程、醫學信息工程等工科專業培養醫工結合人才。

3.2醫學人才培養體系初步構想

據悉,目前已經有天津大學、南開大學等幾所院校開設了智能方向的醫學本科教育,旨在彌補上述缺口,相關院校也在積極探索新型人才培養方案。應當為醫學生開設人工智能課程,應當培養具備生命科學、電子技術、計算機技術及信息科學有關的基礎理論知識以及醫學與工程技術相結合的科學研究能力。該專業的學生主要學習生命科學、臨床醫學,電子技術、計算機技術和信息科學的基本理論和基本知識,充分進行計算機技術在醫學中的應用的訓練,具有智能醫學工程領域中的研究和開發的基本能力。

第7篇

人工智能技術及其應用的發展歷史雖然只有短短的50余年,但是它作為信息技術的前沿領域,對社會經濟和發展的影響卻越來越大。在基礎教育課程改革的大潮中,許多國家意識到基礎教育領域開展人工智能教育的必要性,努力把人工智能列入技術類教育的教學內容中。作為師范類院校,教授人工智能課是有必要的。? 

(1)為部分優秀的學生將來做更深入的研究打堅實的基礎。在面向知識經濟的今天,研究獲取、表示和使用知識的人工智能學科越來越受到人們的重視。目前人工智能研究被列為中國高技術領域的重點之一。以專家系統為代表的智能化系統在信息技術中也占有重要地位。因此在高等教育中開展人工智能教育和智能化系統的研發,不僅是計算機科學的應用,也是促進各學科服務于國民經濟發展的必然趨勢。為使人工智能的理論、方法和技術的研究與應用普及和深入,教育重心必須要下移,即從研究生教育向本科教育普及。開展本科層次人工智能普及教育的有效途徑之一是在本科高年級開設相關選修課。開展人工智能教育,不僅能夠更好地發揮高等院校的育人和科學研究功能,而且能為學生拓寬專業路徑,擴大自主學習空間和發展個性創造條件,同時也為營造一個使學生不僅有寬厚、扎實的理論基礎,且具綜合分析和解決問題能力的環境。? 

(2)為將來從教的學生積聚大量的知識。英國早在1999年,人工智能課程已經作為選修課出現在中學的信息與通訊技術(ICT)課程中。許多中小學還通過機器人競賽活動來激發中小學生學習人工智能的興趣,使學生不僅提高了用信息技術解決問題的能力,而且培養了多種思維方式,獲得了更多的創新空間。美國現行的中學信息技術課程設置中,將人工智能的內容作為“媒體與技術”層面對12年級學生的要求。澳大利亞的部分中學開設的信息處理與技術課程,人工智能、信息系統、算法和程序設計、社會和倫理道德、計算機系統分別作為5個主題共同構成了該課程的教學內容。在該課程的大綱中規定,人工智能部分的教學內容在高中第3學期為12年級的學生開設,教學時間為10周。? 

在我國,多年以來中學奧林匹克信息學競賽中一直包含有人工智能相關的題目,涉及啟發式搜索、博弈、智能程序設計等問題。2003年4月,我國教育部正式頒布《普通高中技術課程標準(實驗)》,首次在信息技術科目中設立了“人工智能初步”選修模塊,標志著我國高中人工智能課程的正式起步。? 

我國的新課程標準頒布后,教育部評審并通過了分別由教育科學出版社、廣東高教出版社、地圖出版社、上海科技教育出版社和浙江教育出版社出版的5套高中《人工智能初步》教材,并開發了相應的教輔材料,包括教師用書和配套光盤等。為了配合中學人工智能課程的實施,國內也推出了一些適合中學生學習與體驗的人工智能軟件和網絡資源。另一方面,一些高校的本科生、研究生也逐步關注中學人工智能教育的開展并將其作為畢業論文的研究選題。一些師范院校適應形勢要求,已為師范生開設了與此相關的選修課程。? 

2 人工智能的教育及教學條件現狀? 

通過對本人多年的教學過程進行總結,我校的《人工智能》課程教育現狀可總結為如下幾點:? 

(1)理論知識充裕。但與實踐相脫節,特別是在智能科學技術的教育教學方面。盡管知識面相當廣泛,而人工智能理論的普及教育以及智能技術的開發與應用仍然十分滯后。? 

(2)同其它普通高等院校一樣,在本校,人工智能技術的研究與應用尚未普及,甚至比不上其它院校。這不利于培養學生的科研興趣及創造精神。? 

(3)缺乏配套實驗教材,實驗教學內容缺乏,無法培養學生的研究能力和創新能力。只有開設實驗項目,才能使人工智能的相關知識具有研究性和綜合性。? 

(4)對中小學智能教育的深度及教學方式、教學特點缺乏研究。做為師范類院校,我認為在對學生進行基礎知識教育的基礎上,要緊抓中小學智能教育的特點對師范類學生進行相關的教育與培訓。? 

相對于教育現狀,我校的《人工智能》課程教學條件現狀要稍好一些,其狀態如下:? 

(1)教材使用國家級規劃教材,此教材非常系統地介紹了人工智能的基本原理、方法和應用技術,適合本科及研究生使用。在我們的授課過程中,也會適當為學生提供相關的國內其他先進教材,如中南大學蔡自興教授的《人工智能及其應用》等。? 

(2)為了促進學生自主學習,我們準備了多種類型的擴充性學習資料,加強學生主動學習的意識,包括:課程相關雜志和書籍目錄,以及部分重要的參考文獻,與人工智能相關的網絡資源如優秀BBS、新聞組、網址等。 它們包括了大量的文獻資料、本領域研究的前沿動態等。 使用表明,學生非常樂于查閱這些資源。 使學生能通過使用這些資源進行一些人工智能程序設計,探討一些問題,在課堂討論中展示他們的收獲。? 

(3)校園網的普及與不斷優化使本課程有優良的實踐性教學環境,能充分滿足教學需要。我們擁有較充足的多媒體教室和網絡教室,為實現本課程教學提供了物質保障。在網絡資源建設方面,全校辦公室、教室、學生宿舍和教師宿舍都以寬帶網相連,這些硬件設備對本課程教學發揮了重要作用,使本課程教學質量得以明顯提高。? 

3 人工智能教學方法及手段的改革? 

針對我們現在所采取的教學方法,我認為存在許多不足,如教學方式比較單一,教學內容偏重理論講解等,為此,提出以下教學方法的改革:? 

(1)通過多種途徑激發學生的學習興趣。課程的學習效果,直接受到學生興趣和參與意識的影響。一般來講,《人工智能》作為一門前沿課程,開始學生學習興趣很大,當開始接觸到抽象理論知識及部分算法時,學生往往感到不易接受。 我們通過各種途徑和方法, 激發和培養學生的學習興趣,包括鼓勵學生參與某部分知識的擴充性資料查找,預留一定時間請學生負責對此內容進行講解,布置學生對某個基本成型的實驗進行糾錯及驗證,降低問題解決的難度。學生因此產生興趣從而做更深度研究。? 

(2)進行啟發式教學。 我們可以嘗試在教學過程中不斷提出問題請學生思考,啟發學生求解這些問題,鼓勵學生提出自己的猜想和解決方案,然后擺出教材中的解決方案,并與同學所提出的觀點進行分析和比較,這足以加強學生學習的主動意識和參與意識,提高學生學習的積極性。? 

(3)課堂辯論與交互式教學。 組織課堂辯論,討論的議題可定位為譬如人工智能是否能超過人類智能等有爭議的問題。學生通過對這些問題展開激烈爭論,激發了學習潛能,明確了學習目標。當然師生間的交流方式還有很多,如郵件互發、QQ留言等,也可在課程網站中的互動平臺進行交流。? 

(4)分層次因材施教。 在授課過程中,通過對每個具體學生的學習進度、課堂作業情況進行及時評估,對學生提出進一步的學習建議和指導, 實現個性化的教學。 對優秀學生探討,可以在教學設計和實驗設計中要求其選作部分探索性、創新性的功課和實驗,以發揮學生個性優勢。對于有意于將來從事中小學教育的學生可以在機器人及人工智能技術發展現狀等知識層面對其做問題講解。而那些看似缺乏興趣的學生,我們可以用多媒體手段如播放人工智能相關電影及科學小片引起其興趣,實行逐步引導的教學過程。? 

另外,我們可以嘗試雙語教學。 采用中文教材和講授的同時,注重在課程中的關鍵詞同時用英文表示,并適當指定英文參考短文和英文參考書。使學生能夠接觸國外文獻資料,加深對學習內容的理解,獲得更寬廣的知識。我們也可以在教學內容安排上,注重理論聯系實際,將一些人工智能網絡上的虛擬實驗給學生進行課外上網練習,從而使學生了解算法的具體運行過程, 通過參與達到知識的理解,掌握基本方法和技術。? 

 

根據現有的條件,我們在教學中可以采用多媒體教學和網絡課程教學相結合的方法,充分利用多媒體的豐富表現形式,利用網絡課程的交互性、情景化等特點,構筑以學生為主體的《人工智能》課程現代教學模式。 對于抽象知識,可通過動畫和視頻演示,通過聲音和圖像展示人工智能的歷史、人物和前景,做到學生直接而深刻地看到知識的內涵外延。網絡課程能較好地實現交互并使學習過程情景化,通過網絡課程的課堂練習和章節練習,教師可以評價學生的學習情況,并給學生提出學習建議,從而提高學生的研究力和創新力。我們也可以給學生播放中學《人工智能》課程課堂教學錄像,以使學生看到初高中學生的知識范圍及深度;同時給學生播放現有的《人工智能》科學成果,讓學生看到理論背后的實踐;也可以播放科幻片,激發學生想象的翅膀從而有興趣把人工智能作為將來深造的方向。《人工智能》是一門較新的課程,改進教學方法和手段不僅要靠教師,也應增加硬件設備的投入。如果人工智能能采用智能輔助教學系統或機器人輔助教學過程逼真、形象,一目了然,這樣可大大提高學生的學習效率,尤其是提高學生的觀察判斷能力、發現問題和解決問題的能力。? 

4 人工智能實踐教學設計的探討? 

我們可以在教學過程中,適量開設一些實驗和設計,提高學生的動手能力,并加深他們對理論知識的理解,降低理論的抽象度,提升理論的實用性。在近兩年的教學過程中,我們會適量加入一些人工智能語言的教學過程。例如,在講解了“野人與傳教士過河”等問題后,我們可以讓學生使用Visual Prolog或者C ?++?對算法進行實現;在講解 TSP 問題的遺傳算法解決案例后,指出編碼方案、初始種群大小、進化代數、交叉率變異率等因素對求解結果的影響,并要求學生通過實驗的方式來分析、理解這些問題,并提出“尋找更有利的解決方案”等問題。把學生的興趣激發后,為解決這些問題,學生會在課外主動查閱相關文獻、相互討論以實現他們所設計的方案,這樣既培養了學生善于鉆研和勇于創新的精神又提高了學生的實踐與創新能力。? 

參考文獻:? 

[1] 熊德蘭,李梅蓮,鄢靖豐.人工智能中實踐教學的探討[J].宿州學院學報,2008(1).? 

[2] 何元烈,汪玲.“Visual C ?++?”在“人工智能”教學中的應用與探討[J].廣東工業大學學報:社會科學版,2008(8).? 

第8篇

關鍵詞:人工智能;研究型實驗教學;民族關系

人工智能是計算機科學的一個分支,是一門研究運用計算機模擬和延伸人腦功能的綜合性學科,對它的研究涉及控制論、信息論、系統論、語言學、神經生理學、數學、哲學等諸多的學科及領域,是一門綜合性的交叉學科[1]。

人工智能的研究、應用和發展,在一定程度上代表著信息技術的發展方向,同時信息技術的廣泛應用也對人工智能技術的發展提出了迫切的需求。今天,人工智能的不少研究領域如自然語言理解、模式識別、機器學習、數據挖掘、智能檢索、機器人技術、人工神經網絡等都走在了信息技術的前沿,有許多研究成果已經進入人們的生活、學習和工作中,并對人類的發展產生了重要影響[2]。

實踐教學環節在大學教育中是一個非常重要的教學環節,是提高人才素質與能力的重要途徑。人工智能課程除了具有較強的專業性之外,還具有突出的實踐性,為了能深入理解和掌握所學內容,必須把講授和實踐結合起來。本文結合該課程實驗教學,將研究型教學的理念引入到實驗教學,并對教學過程中的經驗和問題加以初步的總結。

1研究型教學模式背景

研究型教學是相對于以單向性知識傳授為主的傳統教學提出的,是指教師以課程內容和學生的學識積累為基礎,引導學生創造性地運用知識和能力,自主地發現問題、研究問題和解決問題,在研究中積累知識、培養能力和鍛煉思維的新型教學模式。研究性教學是對現有的大學課堂教學模式的突破。有利于開發大學生的創造潛能,提高學生適應社會需要的創造性和創新能力,充分展現現代大學培養人才、發展科學、服務社會的三大基本職能[3]。

19世紀初,德國著名教育家洪堡最早提出了教學與科研相統一的原則,為研究型教學模式的發展奠定了基礎。20世紀50、60年代,美國著名教育心理學家布魯納提出了著名的“發現教學模式”[4],成為后來探究性學習和研究型教學的先導。20世紀70年代,美國研究教學專家薩奇曼正式提出了研究訓練教學模式。他認為學生會本能地對周圍新奇事物發生興趣,并想方設法弄清這些新奇事物背后究竟發生了什么,這是一種進行科學研究的可貴的動力。

自此,研究型教學理念開始廣泛使用。現在,哈佛大學、牛津大學、劍橋大學等世界著名大學,都非常注重學生能力的培養,普遍采取了研究型教學模式。以美國高校為例,雖然美國高校83%的教師在課堂教學中主要采用講授法進行教學,但在整個教學過程中都滲透著研究型教學的方法,如積極引導學生參與教學過程,開設研究性課程,引導學生積極主動地參與科研活動等。我國自20世紀90年代初推出211工程建設以來,清華大學、北京大學、人民大學、復旦大學、浙江大學等一些重點大學都提出了建設世界一流的綜合性研究型大學的目標。這些高校在實現從單向知識傳授的傳統型教學向關注創新性教育的研究型教學轉變方面進行了許多有益的嘗試。

2研究型實驗教學

本科教學不僅要培養學生的應用能力,還要培養學生具備基本的科研素質。大學是培養未來一線創新人才的主要基地,必須從本科教學人手,深入探索研究型教學的手段和方法,才能滿足未來經濟增長和社會發展的需要,才能符合建設研究型大學的需要。特別是近幾年來我國對科研的投入不斷增加,研究生招生規模逐年增大,本科高年級學生打算繼續讀研的也不在少數。而人工智能是計算機相關學科非常活躍的研究課題,其涵蓋的分支非常廣泛,如模式識別、機器學習、數據挖掘、計算智能、統計學習理論等,都是目前國際和國內熱門的研究方向。

人工智能課程在計算機專業人才培養方案中占據著重要的位置。在專業理論方面,它承續了離散數學中的邏輯知識;在專業方法方面,是數據結構、算法分析與設計的繼續;在專業工具方面,是面向對象程序設計的生動實例。并且人工智能的每一部分內容都可以作為一個深入的研究課題,課堂上講解的內容不可能面面俱到,學生們也不可能對人工智能的每一領域都做很深入的學習。并且人工智能涉及很多的數理邏輯知識,有些顯得難以理解,并且往往讓學生感到比較枯燥,學生的學習興趣就漸漸淡薄,學生往往被動“聽講”,難以獲得預期的教學效果。

針對這一特點,在人工智能教學中,如何引導學生系統學習人工智能的知識、激發學生的研究興趣,樹立目標意識找準研究方向,為未來的科研工作打下基礎,研究型實驗教學就成為了人工智能課程教學的一個重要環節和必然選擇。

2.1實驗教學中加強學生的研究導向

在實驗教學中,如果照搬一些教材中的例子或習題教學,一方面學生們會缺乏興趣,另一方面學生對這個領域的知識缺乏全面的了解。應不斷提出一些學生們感興趣的開放性課題,比如基于支持向量機的人臉識別、基于膚色的人臉檢測,基于內容的圖像檢索等,培養學生們的學習興趣,讓學生們逐漸深入的學習某一領域的知識。比如BP神經網絡,在模式識別、經濟數據分析、生物信息學、數據挖掘等眾多領域都取得過成功應用,是一種具有強大的非線性學習能力的計算智能技術。然而BP神經網絡算法自身也存在著一些缺點,如會有局部最小解、解受初值影響較大、理論解釋不完善等,而支持向量機在這些方面具有顯著優點。我們可以設計一個人臉識別的實驗,用神經網絡和支持向量機分別實現,并作以比較。讓學生們在了解人工智能新技術的同時,也培養學生們如何分析問題、解決問題的科研能力。

2.2人工智能課程實驗

該課程是一門對實驗技術有較高要求的課程,對于基本原理和方法的實現,要求學生進行嚴格的計算機專業技能訓練和培養良好的科研工作作風。因此對課程中的技能及技術性內容,除單獨進行必要的基礎訓練外,還融入到綜合和研究型試驗中,通過多次反復實驗練習,達到牢固掌握人工智能原理和人工智能的問題求解技術的目的。

該課程的實踐環節主要是實踐項目,由具備較強工程實踐能力的任課教師和助教負責,學生可在全天候開放的專用機房完成。在實踐環節的設計上,我們嘗試把驗證性實驗和開發性實驗相結合,結合實驗教學進度,安排相應的開放實驗,開放性實驗以科學研究實驗為主。并在課程的教學過程中,不斷深化和擴展教學內容,結合人工智能學科的發展趨勢和本院老師的最新研究成果,對實驗內容進行更新。

課程主要設置三種層次的實驗:1)基本原理和算法編程,測試例設計及程序測試實驗;2)分析綜合實驗;3)研究型設計實驗。整個實驗包括課前討論、實驗操作、實驗報告、結果討論、總結提高等六個環節。對于綜合性和研究型實驗,把學生分成5個人一小組,每小組選做其中的一個。學生從指導老師處了解到實驗課題后,即著手查資料,研讀文獻,鉆研有關理論。在此基礎上,學生先提出實驗方案,經與老師討論后,即可開始實驗研究。

3實驗平臺的構建

民族關系問題對被訪對象,特別對少數民族被訪對象是非常敏感的問題,對民族關系的評價又存在個體層面、群體層面、不同階層人群之間的差異,因此,僅僅以傳統的文獻分析、問卷統計和現場觀察等民族學方法來進行調查,得到的數據會存在較多誤差。

因此結合本校的民族特色和民族學領域獨特的研究優勢,將信息認知技術引入民族關系研究,運用圖像、心電和腦電數據進行分析,將分析的結果和心理場景測試及民族學調查結果進行相互印證和參數修正,從而獲得盡可能客觀的數據,這些數據將有助于建立一個客觀、完備、科學的民族關系監測體系,并真實全面地評估民族關系,從而使決策機構及時做出正確的決策。基于多信息融合的民族關系監測預警系統總體框圖如圖1所示。

目前該平臺已經搭建,由北京市公共安全信息監測平臺建設、北京市公共安全信息監測平臺建設關鍵技術研究、基于多源信息融合的民族信任研究等多個重大項目支撐。在這個平臺的下面,涉及到人臉識別、表情識別,視頻監控、認識等領域,小波分析、神經網絡、支持向量機、模糊數學、信息融合等人工智能知識得到了具體的應用。學生可以根據自己的興趣愛好,自愿參加到該平臺下的某一項目,切實對自己所學知識有一個深刻的理解和掌握。

4結語

研究型實驗教學激發了學生的學習興趣,不但使學生更好地掌握了人工智能的基本概念、基本理論和基本技術,也切實提高了學生的實際動手能力和編程能力。研究型實驗教學在實踐過程中還有以下問題需要改進:

1) 研究型實驗教學的理念很難普及。很多教師對研究型教學模式的內涵未能準確把握,把研究型教學模式等同于學生實習或者寫論文。

2) 研究型實驗教學的輔導老師素養需要提高。研究型實驗教學作為體現創新教育要求的現代教學模式,需要的不是知識傳授型的教師,而是高素質的研究型教師。教師不僅是單一的教者,更應該成為一個學者,教師不僅要有研究型教學的教育觀念、快速接受新知識的能力和高超的教學技能,要能夠合理地規劃和設計實驗內容。

3) 需要建立一套合理的學生學業和教師績效的評價體系。

參考文獻:

[1] 王萬森. 人工智能原理及其應用[M]. 北京:電子工業出版社,2007.

[2] 蔡自興,徐光佑. 人工智能及其應用[M]. 北京:清華大學出版社,2004.

[3] 李得偉,張超,李海鷹. 大學工科專業課程實施研究型教學的探討[J]. 高等教育研究,2009(9):74-75.

[4] 彭先桃.大學研究性教學的理念探析[J].教育導刊,2008(3):56-58.

Exploration and Practice of the Research Experiment on Artificial Intelligence

ZHANG Ting, YANG Guo-sheng

(College of Information Engineering, Minzu University of China, Beijing 100081, China)

第9篇

Abstract: Knowledge representation is one of the central topics in artificial intelligence. Conceptual Structure is a new and effective knowledge representation method and Conceptual Graph is a concrete semantic model supported Conceptual Structure thoughts. This paper discussed the relation between Conceptual Structure and Conceptual Graph, the method and features of Knowledge representation about Conceptual Graph. Finally, it elaborated the application of Conceptual Graph in Chinese information processing.

關鍵詞:知識表示;概念結構;概念圖;語義

Key words: knowledge representation;conceptual structure;conceptual graph;semantic

中圖分類號:TP391 文獻標識碼:A文章編號:1006-4311(2010)26-0145-02

0引言

知識是人類智能的基礎,知識的表示是人工智能學科研究的三個主要問題之一[1]。人工智能經過半個多世紀的發展,研究出了多種知識表示方法,如一階謂詞邏輯、規則、框架、語義網絡等。這些方法對于描述特定領域的問題求解已足夠了,并已得到廣泛的應用,但傳統的知識表示方法就不能確切地表達語義問題。因此,傳統的知識表達方法能力還很有限,知識表示仍是很久以來人工智能研究的中心課題,還需要相當深入的研究。概念結構理論的出現為知識表示研究帶來了一種新的思路。概念結構(Conceptual Structure)是一種以語言學、心理學、哲學、邏輯學和數學為基礎的新的知識表示方法,是由美國的計算機科學家John F.Sowa在1984年首先提出的,己被從理論上證明了優于其它傳統的知識表達方法。它擴展了人工智能的知識表達方法,對于信息時代從以數據處理為主的低級階段向以知識處理為主的高級階段的轉變和發展具有決定性的意義[2]。

概念圖(Conceptual Graph)是支持概念結構思想的一個具體的語義模型,概念結構理論及應用就是基于概念圖發展起來的,也就是說概念圖是概念結構思想的載體,通過它來發展、傳播、帶動知識表示領域、乃至整個人工智能領域的研究與進步。概念圖的發展經歷了二十幾個春秋,“Conceptual Structures: Information Processing in Mind and Machine reading”(sowa1984)揭開了概念結構的序幕,“conceptual graphsfor a database inference”(Sowa1986)奠定了概念圖應用的基礎。隨后,IBM公司投入了大量人力和物力,潛心研究,出現了一個又一個的成果。國內從90年代開始,西北大學、西北工業大學也進行了探索性研究[2]。

1概念圖的知識表示

概念圖是一種描述復雜對象結構的知識表示工具,其思想來源于C.S.Pierce的存在圖和菲爾墨的語義網絡,是以圖形表示的一種有向連通圖,它包括兩種結點:概念結點和概念關系結點,弧的方向代表概念結點和概念關系結點之間的聯系。概念結點表示問題領域中的一個具體的或抽象的實體,概念關系結點指出一種涉及一個或多個概念結點的關系[3],如動作(AGNT: AGENT),對象(OBJ: OBJECT),材料(MATR: MATERIAL),具有(POSS: POSSESSES),地點(LOC: LOCATE),狀態(STAT: STATUS),部分(PART),方式(MANR: MANNER),工具(INST: INSTRUMENT)等。在概念圖中,概念結點用一個矩形表示,概念關系結點用橢圓表示,有向弧標出了概念關系結點所鄰接的概念結點。每個概念圖可以表示一個命題,典型的知識庫將包含大量這樣的圖。例如:A girl, Sue is eating pie fast. 其概念圖如下所示。概念圖上可以進行拷貝、限制、連接和化簡操作,產生新的概念圖。

概念圖是基于語義網絡的邏輯系統,用它來進行知識表達不但直觀易懂,而且易于操作,通過對概念圖進行各種操作,能產生新的概念關聯和推理規則。此外,概念圖還能直接和自然語言建立映射關系。概念圖所具有的這些優點使它更適合于表達概念結構。

2概念圖的特點

概念圖使用帶標號的結點和連接這些結點間的帶標號的弧表示知識,屬于語義網絡的范疇,其理論建立在謂詞邏輯上,能完全與自然語言相互翻譯,表示出自然語言的語義[5]。概念圖同其他知識表示方法相比,具有更直接的同自然語言之間的映射,圖形化表示、可讀性更佳,比邏輯公式更直觀的特點。概念圖具有結構簡單、易讀、表示范圍廣、能夠確切地表示自然語言的語義、數學基礎嚴密等優點,代表了知識表示的發展趨勢。

概念圖與經典的知識表示方法相比,更符合人類的思維和語言習慣,但是它只能表達一些簡單的概念關系,并不適合于表達包含復雜概念結構的常識性知識。用概念圖進行知識表示需要分析知識的結構,所以其獲取過程要有領域專家的參與,還不能通過一個智能系統自動獲取。此外,對于一個復雜的問題求解而言,這種基于概念圖的推理容易產生冗余或者導致推理結果的不一致。因此,基于概念圖的智能系統只能進行一些簡單的問題求解,而對于包含大量的復雜概念關聯的常識性問題求解,概念圖還不能勝任。

3概念圖的應用

概念圖的理論自從被提出來后,受到很多研究者的青睞并將它應用到不同領域,例如知識工程、信息檢索等,在自然語言處理方面尤其語義理解方面具有廣泛的應用。不少研究者基于概念圖進行了研究與探索,并取得了一些成果。例如,殷亞玲[4]提出了一種基于概念圖的相關反饋技術,采用概念圖的知識表示方式描述概念之間關系,從語義的層次上進行相似度判斷,擴展查詢式。朱海平[5]以概念圖作為語義表示,研究了基于概念圖匹配的語義檢索。楊選選[6]提出的基于語義角色和概念圖的信息抽取模型,是在語義層面上對信息抽取的嘗試。它將淺層的語義信息應用于場景識別和抽取模式兩個層次上,并通過概念圖將句子的語義形式化、可計算化。劉培奇[7]結合主觀題中簡答題的人工批改過程,提出以概念圖理論為基礎的模糊含權概念圖知識表示方法;從漢語自然語言理解的語義分析角度研究了特定課程主觀題自動閱卷問題。

4小結

人工智能領域中絕大多數知識表示方法都直接或間接地涉及到概念結構,概念結構是人類認知能力的重要來源,現代的知識表示方法會越來越重視概念結構。概念圖是一種有力的知識表示工具,能完全描述自然語言所表達的意思,實現與自然語言的互譯。我們相信對概念結構和概念圖的深入研究必將對解決自然語言理解方面的難題產生重要貢獻和促進作用。

參考文獻:

[1]張仰森,黃改娟.人工智能教程[M].北京:高等教育出版社,2008.03.

[2]張蕾,李學良.概念結構及其應用[D].西北工業大學博士論文,2001.05.

[3]賀文,危輝.概念結構研究綜述[J].計算機應用與軟件,2010,27(1):156-159.

[4]殷亞玲,張蕾.基于概念圖的相關反饋系統的研究與實現[D].西北大學碩士論文,2006.07.

[5]朱海平,俞勇.基于概念圖匹配的語義搜索[D].上海交通大學博士論文,2006.10.

相關文章
相關期刊
主站蜘蛛池模板: 五月婷婷激情综合网 | 国产农村1级毛片 | 国产欧美日韩第一页 | 婷婷综合缴情亚洲五月伊 | 在线精品视频免费观看 | 男人的天堂黄色 | 欧美福利二区 | 久久鸭综合久久国产 | 欧美 日韩 中文字幕 | 免费在线观看a级毛片 | 欧美成人精品高清在线播放 | 婷婷电影网 | 久久国产小视频 | 福利视频一区 | 男女国产视频 | 久久亚洲国产欧洲精品一 | 精品亚洲综合久久中文字幕 | 黄色大片影院视频免费 | 99久久免费国产精品 | 斗破苍穹漫画扑飞在线观看免费版 | 鸥美黄色 | 五月四房婷婷 | 国内精品在线视频 | 国产精品网址在线观看你懂的 | 99精品99| 久久国产精品偷 | 漂亮保姆8 | 国产精品久久亚洲一区二区 | 国产不卡精品一区二区三区 | 国产一区二区久久久 | 一级毛片在线 | 欧美亚洲自拍偷拍 | 你懂的在线视频网站 | 国内精品久久久久影院6 | 四虎影院国产 | 免费看国产精品久久久久 | 99精品视频一区在线视频免费观看 | 免费一级视频 | 日本一道高清不卡免费 | 日本激情在线观看 | 日本福利在线观看 |